感受野计算问题

article/2025/9/14 16:06:06

我觉得以下两篇文章,在感受野的含义和计算上,说的是比较好的。

1、深度学习:VGG(Vision Geometrical Group)论文详细讲解_HanZee的博客-CSDN博客

2、关于感受野的总结 - 知乎 

我们知道一个图片经过了一个7 * 7卷积的feature map的感受野是7 * 7,而图片经历了三个3 * 3后的frature map也是7 * 7

这时候我们就说第三次卷积后的输出相对于最开始输入的感受野大小也是7*7。

 所以感受野一定要提到一个“相对的”概念,相对于上一层的输入以及相对于最开始的网络输入肯定是不同的!

另外注意:RF_{0} = 1,这个很容易理解,最初始的层(还未进行)的感受野自然是相对自己,那么相对于自己自然是1个像素对应1个像素,这个感受野自然就是1了。

我们接下来特别进一步解释和理解一下感受野:

前面所说的都是理论上得感受野,而特征得有效感受野(实际起作用的感受野)是远小于理论感受野的。

如下图所示。具体数学分析比较复杂,不再赘述,感兴趣的话可以参考论文[2]。

下面我从直观上解释一下有效感受野背后的原因。以一个两层 kernelsize = 3 ,stride = 1

的网络为例,该网络的理论感受野为5。

RF1 = RF0 + (kernelsize - 1)* stride = 1 + 2 * 1=3

RF2 = RF1 + (kernelsize - 1)* stride = 3 + 2 * 1=5

 图片来源:关于感受野的总结 - 知乎

现在流行的目标检测网络大部分都是基于anchor的,比如SSD系列,v2以后的yolo,还有faster rcnn系列。

基于anchor的目标检测网络会预设一组大小不同的anchor,比如32x32、64x64、128x128、256x256,这么多anchor,我们应该放置在哪几层比较合适呢?这个时候感受野的大小是一个重要的考虑因素。

放置anchor层的特征感受野应该跟anchor大小相匹配(特征感受野这个怎么理解呢,就是该层特征图所对应网络最开始输入的感受野大小),感受野比anchor大太多不好。

如果感受野比anchor小很多,就好比只给你一只脚,让你说出这是什么鸟一样。如果感受野比anchor大很多,则好比给你一张世界地图,让你指出故宫在哪儿一样。

《S3FD: Single Shot Scale-invariant Face Detector》这篇人脸检测器论文就是依据感受野来设计anchor的大小的一个例子,文中的原话是

we design anchor scales based on  the effective receptive field

《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》这篇论文在设计多尺度anchor的时候,依据同样是感受野,文章的一个贡献为

We introduce the Multiple Scale Convolutional Layers
(MSCL) to handle various scales of face via  enriching
receptive fields and discretizing anchors over layers

引文:

[2]Understanding the Effective Receptive Field in Deep Convolutional Neural Networks


http://chatgpt.dhexx.cn/article/n3Wwjukb.shtml

相关文章

目标检测中的感受野

一、定义 卷积神经网络输出特征图上的像素点 在原始图像上所能看到区域的大小,输出特征会受感受野区域内的像素点的影响 在卷积神经网络中,感受野(Receptive Field)是指特征图上的某个点能看到的输入图像的区域,即特征图上的点是由输入图像中感受野大小区域的计算…

感受野的理解与调研

问题来源 讲论文的时候,突然被别人问到感受野是个什么东东? 就百度查了一下: 重要知识链接总结 画深度学习的模型图方法:知网链接 神经网络模型图网站:画模型 感受野 一、感受野的概念 感受野(Receptive Field&am…

卷积的感受野

title: 卷积的感受野 date: 2022-06-14 19:52:38 tags: 深度学习基础 卷积的感受野 文章目录 title: 卷积的感受野 date: 2022-06-14 19:52:38 tags: 深度学习基础卷积的感受野什么是感受野为什么浅层特征预测小目标,深层特征预测大目标深层特征检测大目标&#xf…

感受野

感受野 先图解一下啥是感受野 感受野具体就是通过卷积核扫描原始图片之后一个feature map的格子代表原始图片的范围大小。 如上图,这是一个55的原始图片padding11,卷积核33,步距2。卷积扫描两次的示意图。 (2个33的卷积核扫描两次…

卷积神经网络中感受野的详细介绍

"微信公众号" 本文同步更新在我的微信公众号里面,地址:https://mp.weixin.qq.com/s/qMasyxRILzyEF3YyLvjzqQ 本文同步更新在我的知乎专栏里面,地址:https://zhuanlan.zhihu.com/p/39184237 1. 感受野的概念 在卷积神经…

感受野详解

目录 概念举例感受野的计算规律两种计算感受野的方法从前往后从后往前 推导VGG16网络的感受野结构从后往前从前往后 感受野大于图片为什么要增大感受野 概念 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征…

深度理解感受野(一)什么是感受野?

Introduction 经典目标检测和最新目标跟踪都用到了RPN(region proposal network),锚框(anchor)是RPN的基础,感受野(receptive field, RF)是anchor的基础。本文介绍感受野及其计算方法,和有效感受野概念 什么是感受野? 感受野与视觉 感受…

感受野的含义及计算方法

1 感受野(Receptive Field)的概念 感受野(Receptive Field)的概念:在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始输入图像上映射的区域大小。第一层卷积层的输出特征图像素的感…

感受野是什么?

在卷积神经网络中,感受野(Receptive Field)是指特征图上的某个点能看到的输入图像的区域,即特征图上的点是由输入图像中感受野大小区域的计算得到的。神经元感受野的值越大表示其能接触到的原始图像范围就越大,也意味着它可能蕴含更为全局,语义层次更高的…

细说卷积神经网络(CNN)中所谓的“感受野”(Receptive Field)

感受野 一、感受野1.全连接网络与卷积神经网络2.进一步体验“感受野”3.计算感受野通用方式4.综合实例5.总结 一、感受野 感受野:卷积神经网络中每个网络层输出的特征图中的单个元素映射回原始输入特征中的区域大小,网络层越深,其输出特征的元…

【Kafka】10道不得不会的 Kafka 面试题

博主介绍: 🚀自媒体 JavaPub 独立维护人,全网粉丝15w,csdn博客专家、java领域优质创作者,51ctoTOP10博主,知乎/掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和副业。🚀 公众号&…

Java程序员必备的50道Kafka面试题及解析,面试再也不怕问Kafka了

前言 Apache Kafka的受欢迎程度很高,Kafka拥有充足的就业机会和职业前景。此外,在这个时代拥有kafka知识是一条快速增长的道路。所以,在这篇文章中,我们收集了Apache Kafka面试中常见的问题,并提供了答案。因此&#…

Kafka面试题总结

1、kafka是什么? 可以用来做什么? Kafka 是一个分布式的、高吞吐量的、可持久性的、自动负载均衡的消息队列。 它不仅可以实现传统意义上MQ功能,异步、解耦、削峰。 还可以作为大数据的流处理平台。 2、为什么kafka安装需要依赖Zookeeper? 配置中心&#xf…

kafka面试题知识点整理

kafka-面试题整理 刚刚学了kafka,整理一些面试题知识点,帮助记忆1、什么是kafka2、什么是消息队列3、kafka通信流程4、Leader选举流程5、副本及同步原理6、消费者消费数据的方式7、分区分配策略以及原理8、如何保证消息的可靠性9、数据有序/乱序10、幂等…

kafka面试题

1.Kafka数据积压如何处理? 1. 实时/消费任务挂掉导致的消费滞后 a. 任务重新启动后直接消费最新的消息,对于"滞后"的历史数据采用离线程序进行"补漏"。b. 任务启动从上次提交offset处开始消费处理 如果积压的数据量很大&#xff0c…

Kafka 面试题,看这一篇就够了

Kafka 基础 消息系统的作用 大部分小伙伴应该都清楚,这里用机油装箱举个例子: 所以消息系统就是如上图我们所说的仓库,能在中间过程作为缓存,并且实现解耦合的作用。 引入一个场景,我们知道中国移动,中国联…

32 道常见的 Kafka 面试题

最近很多粉丝后台留言问了一些大数据的面试题,其中包括了大量的 Kafka、Spark等相关的问题,所以我特意抽出时间整理了一些大数据相关面试题,本文是 Kafka 面试相关问题,其他系列面试题后面会陆续整理,欢迎关注过往记忆…

Kafka面试题及答案整理 110道 (持续更新)

最新Kafka面试题【附答案解析】Kafka面试题及答案,Kafka最新面试题及答案,Kafka面试题新答案已经全部更新完了,有些答案是自己总结的,也有些答案是在网上搜集整理的。这些答案难免会存在一些错误,仅供大家参考。如果发…

2022 最新 Kafka 面试题

Kafka 面试题 1、如何获取 topic 主题的列表2、生产者和消费者的命令行是什么?3、consumer 是推还是拉?4、讲讲 kafka 维护消费状态跟踪的方法5、讲一下主从同步\6、为什么需要消息系统,mysql 不能满足需求吗?1.解耦:2…

20道常见的kafka面试题以及答案

JAVA面试宝典,搞定JAVA面试,不再是难题,系列文章传送地址,请点击本链接。 目录 1、kafka的消费者是pull(拉)还是push(推)模式,这种模式有什么好处? 2、kafka维护消息状态的跟踪方法 3、zookeeper对于ka…