Doc2vec

article/2025/8/23 19:53:06

目录

一:背景

二:基本原理

2.1:PV-DM

2.2:PV-DBOW

2.3:和word2vec区别

2.4:预测新文本的向量

三:代码实战

3.1:接口介绍

         3.2:主要代码


一:背景

之前总结了Word2vec训练词向量的细节,讲解了一个词是如何通过word2vec模型训练出唯一的向量来表示的。那接着可能就会想到,有没有什么办法能够将一个句子甚至一篇短文也用一个向量来表示呢?答案是肯定有的,Doc2vec就是常用的算法之一。许多机器学习算法需要的输入是一个固定长度的向量,当涉及到短文时,最常用的固定长度的向量方法是词袋模型(bag-of-words)。尽管它很流行,但是词袋模型存在两个主要的缺点:一个是词袋模型忽略词序,如果两个不同的句子由相同的词但是顺序不同组成,词袋模型会将这两句话定义为同一个表达另一个是词袋模型忽略了句法,这样训练出来的模型会造成类似'powerful','strong'和'Paris'的距离是相同的,而其实'powerful'应该相对于'Paris'距离'strong'更近才对

Doc2Vec 或者叫做 paragraph2vec, sentence embeddings,是一种非监督式算法,可以获得 sentences/paragraphs/documents 的向量表达,是 word2vec 的拓展。学出来的向量可以通过计算距离来找 sentences/paragraphs/documents 之间的相似性

二:基本原理

假设现在存在训练样本,每个句子是训练样本。和word2vec一样,Doc2vec也有两种训练方式,一种是PV-DM(Distributed Memory Model of paragraphvectors)类似于word2vec中的CBOW模型,训练句向量的方法和词向量的方法非常类似。训练词向量的核心思想就是说可以根据每个单词的上下文预测,也就是说上下文的单词对是有影响的。那么同理,可以用同样的方法训练doc2vec。例如对于一个句子i want to drink water,如果要去预测句子中的单词want,那么不仅可以根据其他单词生成feature, 也可以根据其他单词和句子来生成feature进行预测。如图一:

2.1:PV-DM

每个段落/句子都被映射到向量空间中,可以用矩阵DD的一列来表示。每个单词同样被映射到向量空间,可以用矩阵WW的一列来表示。然后将段落向量和词向量级联或者求平均得到特征,预测句子中的下一个单词。

这个段落向量/句向量也可以认为是一个单词,它的作用相当于是上下文的记忆单元或者是这个段落的主题,所以我们一般叫这种训练方法为Distributed Memory Model of Paragraph Vectors(PV-DM)

在训练的时候我们固定上下文的长度,用滑动窗口的方法产生训练集。段落向量/句向量 在该上下文中共享。

总结doc2vec的过程, 主要有两步:

  • 训练模型,在已知的训练数据中得到词向量W, softmax的参数U和b,以及段落向量/句向量D
  • 推断过程(inference stage),对于新的段落,得到其向量表达。具体地,在矩阵D中添加更多的列,在固定WW,UU,bb的情况下,利用上述方法进行训练,使用梯度下降的方法得到新的D,从而得到新段落的向量表达。

2.2:PV-DBOW

还有一种训练方法是忽略输入的上下文,让模型去预测段落中的随机一个单词。就是在每次迭代的时候,从文本中采样得到一个窗口,再从这个窗口中随机采样一个单词作为预测任务,让模型去预测,输入就是段落向量。如下所示:

2.3:和word2vec区别

Doc2vec相对于word2vec不同之处在于,在输入层,增添了一个新句子向量Paragraph vector,Paragraph vector可以被看作是另一个词向量,它扮演了一个记忆,它每次训练也是滑动截取句子中一小部分词来训练,Paragraph Vector在同一个句子的若干次训练中是共享的,所以同一句话会有多次训练,每次训练中输入都包含Paragraph vector。它可以被看作是句子的主旨,有了它,该句子的主旨每次都会被放入作为输入的一部分来训练。这样每次训练过程中,不光是训练了词,得到了词向量。同时随着一句话每次滑动取若干词训练的过程中,作为每次训练的输入层一部分的共享Paragraph vector,该向量表达的主旨会越来越准确

2.4:预测新文本的向量

训练完了以后,就会得到训练样本中所有的词向量和每句话对应的句子向量,那么Doc2vec是怎么预测新的句子Paragraph vector呢?其实在预测新的句子的时候,还是会将该Paragraph vector随机初始化,放入模型中再重新根据随机梯度下降不断迭代求得最终稳定下来的句子向量。不过在预测过程中,模型里的词向量还有投影层到输出层的softmax weights参数是不会变的,这样在不断迭代中只会更新Paragraph vector,其他参数均已固定,只需很少的时间就能计算出带预测的Paragraph vector。

三:代码实战

3.1:接口介绍

1.dm=1 PV-DM  dm=0 PV-DBOW。

2.size 所得向量的维度。

3.window 上下文词语离当前词语的最大距离。

4.alpha 初始学习率,在训练中会下降到min_alpha。

5.min_count 词频小于min_count的词会被忽略。

6.max_vocab_size 最大词汇表size,每一百万词会需要1GB的内存,默认没有限制。

7.sample 下采样比例。

8.iter 在整个语料上的迭代次数(epochs),推荐10到20。

9.hs=1 hierarchical softmax ,hs=0(default) negative sampling。

10.dm_mean=0(default) 上下文向量取综合,dm_mean=1 上下文向量取均值。

11.dbow_words:1训练词向量,0只训练doc向量。

3.2:主要代码

#定义模型:model = Doc2Vec(dm=1, min_count=1, window=3, size=size, sample=1e-3, negative=5) 
#训练模型:model.train(x_train, total_examples=model_dm.corpus_count, epochs=epoch_num) #保存模型:model.save('model/model_my.model')#使用infer_vector来推理文档的向量 (输入text仍然是文档的分词列表):vector = model.infer_vector(text) #使用model.docvecs[tag]得到已训练文档的向量。得到与输入文档相似度最高的十个文档:sims = model.docvecs.most_similar([vector], topn=10)



 


http://chatgpt.dhexx.cn/article/n3Ki6e46.shtml

相关文章

关于doc2vec

原文地址:https://blog.csdn.net/john_xyz/article/details/79208564 1.“句向量”简介 word2vec提供了高质量的词向量,并在一些任务中表现良好。 关于word2vec的原理可以参考这几篇论文: https://arxiv.org/pdf/1310.4546.pdfhttps://arx…

doc2vec java_doc2vec

gensim 是处理文本的很强大的工具包,基于python环境下: 1.gensim可以做什么? 它可以完成的任务,参加gensim 主页API中给出的介绍,链接如下: http://radimrehurek.com/gensim/apiref.html 2.word2vec的使用 …

Doc2Vec的简介及应用(gensim)

作者:Gidi Shperber 在本文中,你将学习什么是doc2vec,它是如何构建的,它与word2vec有什么关系,你能用它做什么,并且没有复杂的数学公式。 介绍 文本文档的量化表示在机器学习中是一项具有挑战性的任务。很多应用都…

Doc2Vec模型介绍及使用

Doc2Vec模型 Doc2Vec模型 摘要背景段落向量 PV-DM模型PV-DBOW模型gensim实现Doc2Vec说明参考文献摘要 通过本文,你将了解到: Doc2Vec模型是如何产生的Doc2Vec模型细节Doc2Vec模型的特点Doc2Vec的使用及代码(gensim)背景 Doc2Vec模型的产生要从词向量表示(论文word2vec模型)开…

Doc2Vec - 计算文档之间的相似性

本文旨在向您介绍 Doc2Vec 模型,以及它在计算文档之间的相似性时如何提供帮助。 目录 前言 一、Word2Vec 1.Skip-Gram 2.Continuous Bag-of-Words (CBOW) 二、Doc2Vec 1.Distributed Memory version of Paragraph Vector (PV-DM) 2.Words version of Paragra…

Doc2Vec模型的介绍与gensim中Doc2Vec的使用

文章目录 一、Doc2Vec模型1 、PV-DM2 、PV-DBOW 二、gensim实现1、gensim实现Doc2Vec(IMDB数据集)2、gensim实现Doc2Vec(中文数据集) 三、总结四、程序编写时遇到的错误:gensim包中相关函数说明: 参考资料&…

如何自学游戏引擎的开发?

PS:题猪分得清游戏和游戏引擎的区别,所以各位答主不需要劳神解释两者的区别关系什么的了 PS:这里的游戏引擎暂时指图形模块,其他的声音,物理,网络,UI等等模块暂时不考虑 题猪一直自学编程&#…

游戏开发完整学习路线(各个版本都有)

来自:微浪科技 作者:若朝若曦 在软件开发中,游戏开发这个方向看起来目标很明确,但其实是个领域很广的方向,入门的时候如果得不到指点一二,很容易误入歧途,相反,如果走这条路之前能…

智力开发小游戏集含游戏过程中数据存取-C#入门教学程序

对于初学C#程序开发的学员,一般进行采取开发小游戏程序,这样做首先不会让学员失去学习的兴趣,其次可以将C#中基本的控件与类的写法整合到这些游戏程序中,再次将对数据库的操作也教给学员。通过几年的观察这样的教学有它的好处。所…

游戏开发所需要的知识

从放弃求职回家已经一个半月了,一直都在备考事业编。发现这玩意比游戏开发简单太多了,没有人刁难,没有人催促,几个月举办一次,一天只需要学习3-4个小时,其余时间都是自由安排,太舒服了。考上编后…

零基础游戏开发笔记1——游戏开发流程

万事开头难,多学多练习,熟悉游戏开发的主要流程,莫要强行记忆。 首先,我们来了解一下游戏的开发流程。 第一就是立案,建立策划案。 策划案包含很多东西,包括游戏介绍、游戏内容、游戏模型介绍、游戏数值、…

游戏开发流程之完整指南

“现在,是时候改进您的游戏开发流程了。在这里,无论您是在独立的初创公司亦或大型游戏工作室中,我们都可以调度资源,使您的工作室的开发和设计工作晋升一个层次。” 您可以把本指引当做游戏开发流程改进的参考 我们将覆盖所有您…

游戏开发笔记(二)——开发流程和项目管理

前一篇说到分工,这里再说说流程和开发管理。 组织形式 从公司角度来看一个游戏工作室是一个业务比较独立的研发部门,研发方面的大小事务(除了立项)拥有高度自治权。而从一个工作室角度来看,通常内部又由多个项目组组成…

游戏开发 - 开发流程 - 收集

1.应用场景 主要用于了解,掌握游戏开发的整个流程。 2.学习/操作 1.文档阅读 复习课 | 带你梳理客户端开发的三个重点-极客时间 2.整理输出 2.1 游戏开发流程 -- 参考 按照游戏开发中的三大模块策划、程序、美术,画了一个图。 开发游戏的时候&#xf…

游戏开发完整流程

1. 立项 一个项目立项的原因可能性非常多,有可能是公司拿到一个好的IP,也有可能是几个负责人有个很棒的idea,亦或是老板的梦想是做一个XX类型的游戏,这边不做过多的讨论。 立项过程中应该包含市场调查和产品定位&#xff0c…

如何开发一款游戏?【游戏开发所需技能和开发流程】

开发一款游戏需要的技能包括:编程、设计、音效和项目管理。每个角色都需要掌握其特定领域的知识和技能,并与其他团队成员合作。在本文中,我们将深入探讨如何开发一款游戏。 1. 游戏开发流程 游戏开发流程可以分为以下几个阶段: …

如何开发一款游戏:游戏开发流程及所需工具

本文来自作者 goto先生 在 GitChat 上分享 「如何开发一款游戏:游戏开发流程及所需工具」 编辑 | 哈比 游戏作为娱乐生活的一个方面,参与其中的人越来越多,而大部分参与其中的人都是以玩家的身份。 他们热爱一款游戏,或是被游戏的…

文本识别CRNN模型介绍以及pytorch代码实现

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、CRNN模型介绍1.模型结构2.CTCLossbeam search 二、使用pytorch实现crnn数据集 前言 文本识别是图像领域的一个常见任务,场景文字识别OCR任务中…

crnn 学习笔记

常用文本识别算法有两种: CNNRNNCTC(CRNNCTC)CNNSeq2SeqAttention 其中CTC与Attention相当于是一种对齐方式,具体算法原理比较复杂,就不做详细的探讨。其中CTC可参考这篇博文,关于Attention机制的介绍&am…

智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》

智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码)》 目录 智能驾驶 车牌检测和识别(三)《CRNN和LPRNet实现车牌识别(含车牌识别数据集和训练代码&#xf…