【一致性仿真】Fixed-time bipartite consensus of multi-agent systems with disturbances

article/2025/10/26 7:09:02

文章链接:Fixed-time bipartite consensus of multi-agent systems with disturbances
仿真图Fig2:
在这里插入图片描述
MATLAB代码:

% Fixed-time bipartite consensus of multi-agent systems with disturbances
% author:JCGUY
% date:2022-04-20
clear
clc%% 
tBegin = 0;
dT     = 0.001;
tFinal = 8;
times  = (tFinal - tBegin) / dT;
time   = 1;
t(1,1) = 0;A = [ 0 -1  0  6  0  7;-1  0  2  0  0  0;0  2  0 -3  0  0;6  0 -3  0 -4  0;0  0  0 -4  0 -2;7  0  0  0 -2  0];X(:,1) = [-8 -6 -2 2 6 8]';
% X(:,1) = [-20 -15 10 -6 20 6]';
U(:,1) = [0, 0, 0, 0, 0]';
Usum(:,1) = [0, 0, 0, 0, 0]';
mu=0.5;eta=0.6;alpha=6.1;m=3;%提供的参数%% 迭代公式,收敛计算
for i=1:timest(:,i+1) = t(:,i) + dT;% 控制输入分别为 atan()Usum(1, i)= A(1,2)*(X(2, i)-sign(A(1,2))*X(1, i)) + A(1,4)*(X(4, i)-sign(A(1,4))*X(1, i)) + A(1,6)*(X(6, i)-sign(A(1,6))*X(1, i));U(1, i) = mu*sign(Usum(1, i))*abs(Usum(1, i))^(2-1/m)+eta*sign(Usum(1, i))*abs(Usum(1, i))^(1/m)+alpha*sign(Usum(1, i)) + 0.1;Usum(2, i)= A(2,1)*(X(2, i)-sign(A(2,1))*X(1, i)) + A(2,3)*(X(3, i)-sign(A(2,3))*X(2, i));U(2, i) = mu*sign(Usum(2, i))*abs(Usum(2, i))^(2-1/m)+eta*sign(Usum(2, i))*abs(Usum(2, i))^(1/m)+alpha*sign(Usum(2, i)) + 0.1;Usum(3, i)= A(3,2)*(X(2, i)-sign(A(3,2))*X(3, i)) + A(3,4)*(X(4, i)-sign(A(3,4))*X(3, i));U(3, i) = mu*sign(Usum(3, i))*abs(Usum(3, i))^(2-1/m)+eta*sign(Usum(3, i))*abs(Usum(3, i))^(1/m)+alpha*sign(Usum(3, i)) + 0.1;Usum(4, i)= A(4,1)*(X(1, i)-sign(A(4,1))*X(4, i)) + A(4,3)*(X(3, i)-sign(A(4,3))*X(4, i)) + A(4,5)*(X(5, i)-sign(A(4,5))*X(4, i));U(4, i) = mu*sign(Usum(4, i))*abs(Usum(4, i))^(2-1/m)+eta*sign(Usum(4, i))*abs(Usum(4, i))^(1/m)+alpha*sign(Usum(4, i)) + 0.1;   Usum(5, i)= A(5,4)*(X(4, i)-sign(A(5,4))*X(5, i)) + A(5,6)*(X(6, i)-sign(A(5,6))*X(5, i));U(5, i) = mu*sign(Usum(5, i))*abs(Usum(5, i))^(2-1/m)+eta*sign(Usum(5, i))*abs(Usum(5, i))^(1/m)+alpha*sign(Usum(5, i)) + 0.1;Usum(6, i)= A(6,1)*(X(1, i)-sign(A(6,1))*X(6, i)) + A(6,5)*(X(5, i)-sign(A(6,5))*X(6, i));U(6, i) = mu*sign(Usum(6, i))*abs(Usum(6, i))^(2-1/m)+eta*sign(Usum(6, i))*abs(Usum(6, i))^(1/m)+alpha*sign(Usum(6, i)) + 0.1;X(:,i+1) = X(:,i) + U(:,i)*dT;end%% 绘图
subplot(1,1,1)
plot(t,X(1,:),'k','linewidth',2.0); hold on % x1
plot(t,X(2,:),'b','linewidth',2.0); hold on % x2
plot(t,X(3,:),'g','linewidth',2.0); hold on % x3
plot(t,X(4,:),'y','linewidth',2.0); hold on % x4
plot(t,X(5,:),'c','linewidth',2.0); hold on % x5
plot(t,X(6,:),'r','linewidth',2.0); hold on % x5
title('Position Trajectory');
legend("x_1", "x_2", "x_3", "x_4", "x_5", "x_6");
%axis([0 8 -8 8]); 
grid on; box on;

仿真图Fig3:
在这里插入图片描述
MATLAB代码:

% Fixed-time bipartite consensus of multi-agent systems with disturbances
% author:JCGUY
% date:2022-04-20
clear
clc%% 
tBegin = 0;
dT     = 0.001;
tFinal = 8;
times  = (tFinal - tBegin) / dT;
time   = 1;
t(1,1) = 0;A = [ 0 -1  0  6  0  7;-1  0  2  0  0  0;0  2  0 -3  0  0;6  0 -3  0 -4  0;0  0  0 -4  0 -2;7  0  0  0 -2  0];X(:,1) = [-8 -6 -2 2 6 8]';
% X(:,1) = [-20 -15 10 -6 20 6]';
U(:,1) = [0, 0, 0, 0, 0]';
Usum(:,1) = [0, 0, 0, 0, 0]';
mu=0.5;eta=0.6;alpha=6.1;m=3;%提供的参数%% 迭代公式,收敛计算
for i=1:timest(:,i+1) = t(:,i) + dT;% 控制输入分别为 atan()Usum(1, i)= A(1,2)*(X(2, i)-sign(A(1,2))*X(1, i)) + A(1,4)*(X(4, i)-sign(A(1,4))*X(1, i)) + A(1,6)*(X(6, i)-sign(A(1,6))*X(1, i));U(1, i) = mu*sign(Usum(1, i))*abs(Usum(1, i))^(2-1/m)+eta*sign(Usum(1, i))*abs(Usum(1, i))^(1/m)+alpha*sign(Usum(1, i)) + sin(1*i);Usum(2, i)= A(2,1)*(X(2, i)-sign(A(2,1))*X(1, i)) + A(2,3)*(X(3, i)-sign(A(2,3))*X(2, i));U(2, i) = mu*sign(Usum(2, i))*abs(Usum(2, i))^(2-1/m)+eta*sign(Usum(2, i))*abs(Usum(2, i))^(1/m)+alpha*sign(Usum(2, i)) + sin(2*i);Usum(3, i)= A(3,2)*(X(2, i)-sign(A(3,2))*X(3, i)) + A(3,4)*(X(4, i)-sign(A(3,4))*X(3, i));U(3, i) = mu*sign(Usum(3, i))*abs(Usum(3, i))^(2-1/m)+eta*sign(Usum(3, i))*abs(Usum(3, i))^(1/m)+alpha*sign(Usum(3, i)) + sin(3*i);Usum(4, i)= A(4,1)*(X(1, i)-sign(A(4,1))*X(4, i)) + A(4,3)*(X(3, i)-sign(A(4,3))*X(4, i)) + A(4,5)*(X(5, i)-sign(A(4,5))*X(4, i));U(4, i) = mu*sign(Usum(4, i))*abs(Usum(4, i))^(2-1/m)+eta*sign(Usum(4, i))*abs(Usum(4, i))^(1/m)+alpha*sign(Usum(4, i)) + sin(4*i);   Usum(5, i)= A(5,4)*(X(4, i)-sign(A(5,4))*X(5, i)) + A(5,6)*(X(6, i)-sign(A(5,6))*X(5, i));U(5, i) = mu*sign(Usum(5, i))*abs(Usum(5, i))^(2-1/m)+eta*sign(Usum(5, i))*abs(Usum(5, i))^(1/m)+alpha*sign(Usum(5, i)) + sin(5*i);Usum(6, i)= A(6,1)*(X(1, i)-sign(A(6,1))*X(6, i)) + A(6,5)*(X(5, i)-sign(A(6,5))*X(6, i));U(6, i) = mu*sign(Usum(6, i))*abs(Usum(6, i))^(2-1/m)+eta*sign(Usum(6, i))*abs(Usum(6, i))^(1/m)+alpha*sign(Usum(6, i)) + sin(6*i);X(:,i+1) = X(:,i) + U(:,i)*dT;end%% 绘图
subplot(1,1,1)
plot(t,X(1,:),'k','linewidth',2.0); hold on % x1
plot(t,X(2,:),'b','linewidth',2.0); hold on % x2
plot(t,X(3,:),'g','linewidth',2.0); hold on % x3
plot(t,X(4,:),'y','linewidth',2.0); hold on % x4
plot(t,X(5,:),'c','linewidth',2.0); hold on % x5
plot(t,X(6,:),'r','linewidth',2.0); hold on % x5
title('Position Trajectory');
legend("x_1", "x_2", "x_3", "x_4", "x_5", "x_6");
%axis([0 8 -8 8]); 
grid on; box on;

仿真图Fig4:
在这里插入图片描述

MATLAB代码:

% Fixed-time bipartite consensus of multi-agent systems with disturbances
% author:JCGUY
% date:2022-04-20
clear
clc%% 
tBegin = 0;
dT     = 0.001;
tFinal = 8;
times  = (tFinal - tBegin) / dT;
time   = 1;
t(1,1) = 0;A = [ 0 -1  0  6  0  7;-1  0  2  0  0  0;0  2  0 -3  0  0;6  0 -3  0 -4  0;0  0  0 -4  0 -2;7  0  0  0 -2  0];X(:,1) = [-8 -6 -2 2 6 8]';
% X(:,1) = [-20 -15 10 -6 20 6]';
U(:,1) = [0, 0, 0, 0, 0]';
mu=0.5;eta=0.6;alpha=6.1;m=3;%提供的参数%% 迭代公式,收敛计算
for i=1:timest(:,i+1) = t(:,i) + dT;% 控制输入分别为 atan()U(1, i) = mu*A(1,2)* sign(X(2, i)-sign(A(1,2))*X(1, i))*abs(X(2, i)-sign(A(1,2))*X(1, i))^(2-1/m)+...mu*A(1,4)* sign(X(4, i)-sign(A(1,4))*X(1, i))*abs(X(4, i)-sign(A(1,4))*X(1, i))^(2-1/m)+...mu*A(1,6)* sign(X(6, i)-sign(A(1,6))*X(1, i))*abs(X(6, i)-sign(A(1,6))*X(1, i))^(2-1/m)+...eta*A(1,2)* sign(X(2, i)-sign(A(1,2))*X(1, i))*abs(X(2, i)-sign(A(1,2))*X(1, i))^(1/m)+...eta*A(1,4)* sign(X(4, i)-sign(A(1,4))*X(1, i))*abs(X(4, i)-sign(A(1,4))*X(1, i))^(1/m)+...eta*A(1,6)* sign(X(6, i)-sign(A(1,6))*X(1, i))*abs(X(6, i)-sign(A(1,6))*X(1, i))^(1/m);U(2, i) = mu*A(2,1)* sign(X(1, i)-sign(A(2,1))*X(2, i))*abs(X(1, i)-sign(A(2,1))*X(2, i))^(2-1/m)+...mu*A(2,3)* sign(X(3, i)-sign(A(2,3))*X(2, i))*abs(X(3, i)-sign(A(2,3))*X(2, i))^(2-1/m)+...eta*A(2,1)* sign(X(1, i)-sign(A(2,1))*X(2, i))*abs(X(1, i)-sign(A(2,1))*X(2, i))^(1/m)+...eta*A(2,3)* sign(X(3, i)-sign(A(2,3))*X(2, i))*abs(X(3, i)-sign(A(2,3))*X(2, i))^(1/m);U(3, i) = mu*A(3,2)* sign(X(2, i)-sign(A(3,2))*X(3, i))*abs(X(2, i)-sign(A(3,2))*X(3, i))^(2-1/m)+...mu*A(3,4)* sign(X(4, i)-sign(A(3,4))*X(3, i))*abs(X(4, i)-sign(A(3,4))*X(3, i))^(2-1/m)+...eta*A(3,2)* sign(X(2, i)-sign(A(3,2))*X(3, i))*abs(X(2, i)-sign(A(3,2))*X(3, i))^(1/m)+...eta*A(3,4)* sign(X(4, i)-sign(A(3,4))*X(3, i))*abs(X(4, i)-sign(A(3,4))*X(3, i))^(1/m);U(4, i) = mu*A(4,1)* sign(X(1, i)-sign(A(4,1))*X(4, i))*abs(X(1, i)-sign(A(4,1))*X(4, i))^(2-1/m)+...mu*A(4,3)* sign(X(3, i)-sign(A(4,3))*X(4, i))*abs(X(3, i)-sign(A(4,3))*X(4, i))^(2-1/m)+...mu*A(4,5)* sign(X(5, i)-sign(A(4,5))*X(4, i))*abs(X(5, i)-sign(A(4,5))*X(4, i))^(2-1/m)+...eta*A(4,1)* sign(X(1, i)-sign(A(4,1))*X(4, i))*abs(X(1, i)-sign(A(4,1))*X(4, i))^(1/m)+...eta*A(4,3)* sign(X(3, i)-sign(A(4,3))*X(4, i))*abs(X(3, i)-sign(A(4,3))*X(4, i))^(1/m)+...eta*A(4,5)* sign(X(5, i)-sign(A(4,5))*X(4, i))*abs(X(5, i)-sign(A(4,5))*X(4, i))^(1/m);U(5, i) = mu*A(5,4)* sign(X(4, i)-sign(A(5,4))*X(5, i))*abs(X(4, i)-sign(A(5,4))*X(5, i))^(2-1/m)+...mu*A(5,6)* sign(X(6, i)-sign(A(5,6))*X(5, i))*abs(X(6, i)-sign(A(5,6))*X(5, i))^(2-1/m)+...eta*A(5,4)* sign(X(4, i)-sign(A(5,4))*X(5, i))*abs(X(4, i)-sign(A(5,4))*X(5, i))^(1/m)+...eta*A(5,6)* sign(X(6, i)-sign(A(5,6))*X(5, i))*abs(X(6, i)-sign(A(5,6))*X(5, i))^(1/m); U(6, i) = mu*A(6,1)* sign(X(1, i)-sign(A(6,1))*X(6, i))*abs(X(1, i)-sign(A(6,1))*X(6, i))^(2-1/m)+...mu*A(6,5)* sign(X(5, i)-sign(A(6,5))*X(6, i))*abs(X(5, i)-sign(A(6,5))*X(6, i))^(2-1/m)+...eta*A(6,1)* sign(X(1, i)-sign(A(6,1))*X(6, i))*abs(X(1, i)-sign(A(6,1))*X(6, i))^(1/m)+...eta*A(6,5)* sign(X(5, i)-sign(A(6,5))*X(6, i))*abs(X(5, i)-sign(A(6,5))*X(6, i))^(1/m);X(:,i+1) = X(:,i) + U(:,i)*dT;end%% 绘图
subplot(1,1,1)
plot(t,X(1,:),'k','linewidth',2.0); hold on % x1
plot(t,X(2,:),'b','linewidth',2.0); hold on % x2
plot(t,X(3,:),'g','linewidth',2.0); hold on % x3
plot(t,X(4,:),'y','linewidth',2.0); hold on % x4
plot(t,X(5,:),'c','linewidth',2.0); hold on % x5
plot(t,X(6,:),'r','linewidth',2.0); hold on % x5
title('Position Trajectory');
legend("x_1", "x_2", "x_3", "x_4", "x_5", "x_6");
%axis([0 8 -8 8]); 
grid on; box on;

仿真图Fig5:
在这里插入图片描述

MATLAB代码:

% Fixed-time bipartite consensus of multi-agent systems with disturbances
% author:JCGUY
% date:2022-04-20
clear
clc%% 
tBegin = 0;
dT     = 0.001;
tFinal = 8;
times  = (tFinal - tBegin) / dT;
time   = 1;
t(1,1) = 0;A = [ 0 -1  0  6  0 -7;-1  0  2  0  0  0;0  2  0  3  0  0;6  0  3  0 -4  0;0  0  0 -4  0 -2;-7  0  0  0 -2  0];X(:,1) = [-8 -6 -2 2 6 8]';
% X(:,1) = [-20 -15 10 -6 20 6]';
U(:,1) = [0, 0, 0, 0, 0]';
mu=0.5;eta=0.6;alpha=6.1;m=3;%提供的参数%% 迭代公式,收敛计算
for i=1:timest(:,i+1) = t(:,i) + dT;% 控制输入分别为 atan()U(1, i) = mu*A(1,2)* sign(X(2, i)-sign(A(1,2))*X(1, i))*abs(X(2, i)-sign(A(1,2))*X(1, i))^(2-1/m)+...mu*A(1,4)* sign(X(4, i)-sign(A(1,4))*X(1, i))*abs(X(4, i)-sign(A(1,4))*X(1, i))^(2-1/m)+...mu*A(1,6)* sign(X(6, i)-sign(A(1,6))*X(1, i))*abs(X(6, i)-sign(A(1,6))*X(1, i))^(2-1/m)+...eta*A(1,2)* sign(X(2, i)-sign(A(1,2))*X(1, i))*abs(X(2, i)-sign(A(1,2))*X(1, i))^(1/m)+...eta*A(1,4)* sign(X(4, i)-sign(A(1,4))*X(1, i))*abs(X(4, i)-sign(A(1,4))*X(1, i))^(1/m)+...eta*A(1,6)* sign(X(6, i)-sign(A(1,6))*X(1, i))*abs(X(6, i)-sign(A(1,6))*X(1, i))^(1/m);U(2, i) = mu*A(2,1)* sign(X(1, i)-sign(A(2,1))*X(2, i))*abs(X(1, i)-sign(A(2,1))*X(2, i))^(2-1/m)+...mu*A(2,3)* sign(X(3, i)-sign(A(2,3))*X(2, i))*abs(X(3, i)-sign(A(2,3))*X(2, i))^(2-1/m)+...eta*A(2,1)* sign(X(1, i)-sign(A(2,1))*X(2, i))*abs(X(1, i)-sign(A(2,1))*X(2, i))^(1/m)+...eta*A(2,3)* sign(X(3, i)-sign(A(2,3))*X(2, i))*abs(X(3, i)-sign(A(2,3))*X(2, i))^(1/m);U(3, i) = mu*A(3,2)* sign(X(2, i)-sign(A(3,2))*X(3, i))*abs(X(2, i)-sign(A(3,2))*X(3, i))^(2-1/m)+...mu*A(3,4)* sign(X(4, i)-sign(A(3,4))*X(3, i))*abs(X(4, i)-sign(A(3,4))*X(3, i))^(2-1/m)+...eta*A(3,2)* sign(X(2, i)-sign(A(3,2))*X(3, i))*abs(X(2, i)-sign(A(3,2))*X(3, i))^(1/m)+...eta*A(3,4)* sign(X(4, i)-sign(A(3,4))*X(3, i))*abs(X(4, i)-sign(A(3,4))*X(3, i))^(1/m);U(4, i) = mu*A(4,1)* sign(X(1, i)-sign(A(4,1))*X(4, i))*abs(X(1, i)-sign(A(4,1))*X(4, i))^(2-1/m)+...mu*A(4,3)* sign(X(3, i)-sign(A(4,3))*X(4, i))*abs(X(3, i)-sign(A(4,3))*X(4, i))^(2-1/m)+...mu*A(4,5)* sign(X(5, i)-sign(A(4,5))*X(4, i))*abs(X(5, i)-sign(A(4,5))*X(4, i))^(2-1/m)+...eta*A(4,1)* sign(X(1, i)-sign(A(4,1))*X(4, i))*abs(X(1, i)-sign(A(4,1))*X(4, i))^(1/m)+...eta*A(4,3)* sign(X(3, i)-sign(A(4,3))*X(4, i))*abs(X(3, i)-sign(A(4,3))*X(4, i))^(1/m)+...eta*A(4,5)* sign(X(5, i)-sign(A(4,5))*X(4, i))*abs(X(5, i)-sign(A(4,5))*X(4, i))^(1/m);U(5, i) = mu*A(5,4)* sign(X(4, i)-sign(A(5,4))*X(5, i))*abs(X(4, i)-sign(A(5,4))*X(5, i))^(2-1/m)+...mu*A(5,6)* sign(X(6, i)-sign(A(5,6))*X(5, i))*abs(X(6, i)-sign(A(5,6))*X(5, i))^(2-1/m)+...eta*A(5,4)* sign(X(4, i)-sign(A(5,4))*X(5, i))*abs(X(4, i)-sign(A(5,4))*X(5, i))^(1/m)+...eta*A(5,6)* sign(X(6, i)-sign(A(5,6))*X(5, i))*abs(X(6, i)-sign(A(5,6))*X(5, i))^(1/m); U(6, i) = mu*A(6,1)* sign(X(1, i)-sign(A(6,1))*X(6, i))*abs(X(1, i)-sign(A(6,1))*X(6, i))^(2-1/m)+...mu*A(6,5)* sign(X(5, i)-sign(A(6,5))*X(6, i))*abs(X(5, i)-sign(A(6,5))*X(6, i))^(2-1/m)+...eta*A(6,1)* sign(X(1, i)-sign(A(6,1))*X(6, i))*abs(X(1, i)-sign(A(6,1))*X(6, i))^(1/m)+...eta*A(6,5)* sign(X(5, i)-sign(A(6,5))*X(6, i))*abs(X(5, i)-sign(A(6,5))*X(6, i))^(1/m);X(:,i+1) = X(:,i) + U(:,i)*dT;end%% 绘图
subplot(1,1,1)
plot(t,X(1,:),'k','linewidth',2.0); hold on % x1
plot(t,X(2,:),'b','linewidth',2.0); hold on % x2
plot(t,X(3,:),'g','linewidth',2.0); hold on % x3
plot(t,X(4,:),'y','linewidth',2.0); hold on % x4
plot(t,X(5,:),'c','linewidth',2.0); hold on % x5
plot(t,X(6,:),'r','linewidth',2.0); hold on % x5
title('Position Trajectory');
legend("x_1", "x_2", "x_3", "x_4", "x_5", "x_6");
%axis([0 8 -8 8]); 
grid on; box on;

http://chatgpt.dhexx.cn/article/m4XgcM45.shtml

相关文章

Bipartite Graph多视图学习聚类文章总结

看了一些anchor graph和bipartite graph 的文章始终不知道他们的区别在哪里。今天总结一下这类文章。 1.能看到最早的这类关于多视图学习的文章 Large-Scale Multi-View Spectral Clustering via Bipartite Graph(AAAI-2015) 目标:we addre…

Fast spectral clustering learning with hierarchical bipartite graph for large-scale data

Fast spectral clustering learning with hierarchical bipartite graph for large-scale data 基于层次二分图的大规模数据快速谱聚类学习 abstract 传统方法:不适用大规模问题 高斯核函数 提出了一种新的基于层次二分图(SCHBG)的光谱聚…

Bipartite Graph Based Multi-View Clustering

Bipartite Graph Based Multi-View Clustering 基于二部图的多视图聚类 abstract 对于基于图的多视图聚类,一个关键问题是通过两阶段学习方案捕获共识聚类结构。具体来说,首先学习多个视图的相似性图矩阵,然后将它们融合为统一的高级图矩阵。…

BiNE: Bipartite Network Embedding

** BiNE: Bipartite Network Embedding ** SIGIR 2018 论文链接:https://dl.acm.org/doi/10.1145/3209978.3209987 项目代码:https://github.com/clhchtcjj/BiNE 文章目录 BiNE: Bipartite Network Embedding 摘要1、Introduction2、Related work&a…

【Paper】2020_Event-triggered bipartite consensus over cooperation-competition networks under DoS atta

Hu, A., Park, J.H., Cao, J. et al. Event-triggered bipartite consensus over cooperation-competition networks under DoS attacks. Sci. China Technol. Sci. 64, 157–168 (2021). 文章目录 1 Introduction2 Problem description and preliminaries2.1 Multiagent model…

Bipartite graph/network学习

Bipartite graph/network翻译过来就是:二分图。 维基百科中对二分图的介绍为:二分图是一类图(G,E),其中G是顶点的集合,E为边的集合,并且G可以分成两个不相交的集合U和V,E中的任意一条边的一个顶点属于集合…

bipartite matching二分图匹配

目录 二分图bipartite的概念 匹配的概念 最大匹配 bipartite matching 这个词最近在看Transformer相关的论文里常见用作loss function,所以特地学习一下,bipartite matching是一个什么操作。个人理解,若有表述错误或不当的问题,还请各位大…

【嵌入式单元测试】C语言单元测试框架搭建

cmocka cmocka交叉编译源码下载 编译准备源码修改指定编译器编译 cmocka使用示例常见问题参考 单元测试框架是一个软件包,它能够让开发者比较方便的表达产品代码需要表现出什么样的行为。单元测试框架提供了一个自动化单元测试的解决方案,让开发者把更多…

三年黑盒测试工程师,带你了解嵌入式测试,金三银四升职加薪秘诀

什么是嵌入式系统? 嵌入式系统是一种“完全嵌入受控器件内部,为特定应用而设计的专用计算机系统”。 嵌入式系统是“用于控制,监视或辅助操作机器和设备的装置”。 嵌入式系统还可以定义为“以应用为中心,以计算机技术为基础,软硬件可裁剪,功能、可靠性、成本、体积、功耗…

嵌入式软件测试的小结

文章内容为本人这三年来在嵌入式软件测试(黑盒)上的一些积累吧,说起来也挺快的,毕业三年的时间就这样过去了,在两家公司工作过(现在这家是第二家),这几年的测试项目基本都是围绕着嵌…

【测试】嵌入式软件测试VS一般软件测试

文章目录 1)什么是软件测试?测试的目的:软件测试的特点:软件测试信息流:软件测试的对象: 2)嵌入式软件测试2.1 嵌入式软件2.2 嵌入式软件测试嵌入式软件测试的特点: 3)嵌…

嵌入式软件自动化测试介绍

什么是嵌入式测试 嵌入式软件测试的概念似乎没那么大众,很多人从字面上理解,可能会以为这是个硬件测试,那么嵌入式测试实际上是什么呢? 根据IEEE(国际电机工程师协会)的定义,嵌入式系统是“控…

嵌入式软件测试的基本方法

嵌入式系统是以应用为中心,以计算机技术为基础,软件硬件可剪裁,适应应用系统对功能、可靠性、成本、体积及功耗严格要求的专用计算机系统。嵌入式系统的软硬件功能界限模糊,测试比PC系统软件测试要困难得多,嵌入式软件…

嵌入式测试大赛预选赛

刚刚参加了预选赛,对于这种热身赛,是不需要一点编程能力的,只不过需要一些细心 题目下载: 链接:https://pan.baidu.com/s/1Xm2d8UYhrK75fukcXQhEcg 密码:hxzy 这次预选赛是在练习题4的基础上改的&#x…

嵌入式软件测试

如何在目标板上实时测试应用程序为什么嵌入式系统测试困难? 在目标板上测试面临的系列问题: 1、如何下载测试到板子上,然后如何收集测试结果 2、如何累积可重复自动执行的测试 3、如何尽可能减少人工工作 4、如何减少内存不够的问题 这…

全国软件测试大赛嵌入式测试步骤及所需工具

文章目录 前言一、所需工具二、测试步骤1.从慕测平台上下载题目2.搭建测试环境3.测试脚本编写怎么编写 总结 前言 全国软件测试大赛嵌入式测试最全步骤及所需的工具 一、所需工具 若需要测试工具请私信我 二、测试步骤 以2019年的省赛题目为例 1.从慕测平台上下载题目 下…

嵌入式软件测试(黑盒测试)-----三年嵌入式软件测试的理解

前言 文章内容为本人这三年来在嵌入式软件测试(黑盒)上的一些积累吧,说起来也挺快的,毕业三年的时间就这样过去了,在两家公司工作过(现在这家是第二家),这几年的测试项目基本都是围绕…

简单聊聊嵌入式软件测试

一、什么是嵌入式?什么是嵌入式软件测试? 此文不从行业术语来讲,就用大白话来描述,容易明白,不当之处,还请见谅和指正。 嵌入式?简单的可以理解为上位机或者单片机,或者运行微型可定…

嵌入式测试

一、嵌入式软件测试的方法 嵌入式软件测试分为4个阶段,即模块测试、集成测试、系统测试、硬件/软件集成测试。前3个阶段适用于任何软件的测试,硬件/软件集成测试阶段是嵌入式软件所特有的,目的是验证嵌入式软件与其所控制的硬件设备能否正确地…

机器学习必备知识点 之 先验概率和后验概率

机器学习必备知识点 见 机器学习必备知识点 我们可以把概率获得分为两种: 一种是从原因到结果——先验概率一种是从结果到原因——后验概率 举个例子: 这里的P(C1),P(C2),P(x|C1),P(x|C1)都是先验概率,因…