SVM多分类的两种方式

article/2025/10/6 11:54:02

以下内容参考:https://www.cnblogs.com/CheeseZH/p/5265959.html

                       http://blog.csdn.net/rainylove1/article/details/32101113

                      王正海《基于决策树多分类支持向量机岩性波谱分类》

       SVM本身是一个二值分类器,SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。 目前,构造SVM多类分类器的方法主要有两类,直接法、间接法。

一 直接法  

    直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难只适合用于小型问题中;

二 间接法

   主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种。

(1)一对多法(one-versus-rest,简称OVR SVMs)

   训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。

  假如我有四类要划分(也就是4个Label),他们是A、B、C、D。

  于是我在抽取训练集的时候,分别抽取

  (1)A所对应的向量作为正集,B,C,D所对应的向量作为负集;

  (2)B所对应的向量作为正集,A,C,D所对应的向量作为负集;

  (3)C所对应的向量作为正集,A,B,D所对应的向量作为负集;

  (4)D所对应的向量作为正集,A,B,C所对应的向量作为负集;

  使用这四个训练集分别进行训练,然后的得到四个训练结果文件。

  在测试的时候,把对应的测试向量分别利用这四个训练结果文件进行测试。

  最后每个测试都有一个结果f1(x),f2(x),f3(x),f4(x)。

  于是最终的结果便是这四个值中最大的一个作为分类结果。

评价

优点:训练k个分类器,个数较少,其分类速度相对较快。

 缺点:

  ①每个分类器的训练都是将全部的样本作为训练样本,这样在求解二次规划问题时,训练速度会随着训练样本的数量的增加而急剧减慢

  ②同时由于负类样本的数据要远远大于正类样本的数据,从而出现了样本不对称的情况,且这种情况随着训练数据的增加而趋向严重。解决不对称的问题可以引入不同的惩罚因子,对样本点来说较少的正类采用较大的惩罚因子C

  ③还有就是当有新的类别加进来时,需要对所有的模型进行重新训练

从“一对多”的方法又衍生出基于决策树的分类:      

      首先将所有类别分为两个类别,再将子类进一步划分为两个次级子类,如此循环下去,直到所有的节点都只包含一个单独的类别为止,此节点也是二叉树树种的叶子。该分类将原有的分类问题同样分解成了一系列的两类分类问题,其中两个子类间的分类函数采用SVM。下图引用出自于王正海《基于决策树多分类支持向量机岩性波谱分类》

 


  

(2)一对一法(one-versus-one,简称OVO SVMs或者pairwise)

     其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。

  当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。

  Libsvm中的多类分类就是根据这个方法实现的。

  假设有四类A,B,C,D四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集,然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结果。

  投票是这样的:
  A=B=C=D=0;
  (A,B)-classifier 如果是A win,则A=A+1;otherwise,B=B+1;
  (A,C)-classifier 如果是A win,则A=A+1;otherwise, C=C+1;
  ...
  (C,D)-classifier 如果是A win,则C=C+1;otherwise,D=D+1;
  The decision is the Max(A,B,C,D)

评价:这种方法虽然好,但是当类别很多的时候,model的个数是n*(n-1)/2,代价还是相当大的。

 评价:

  优点:不需要重新训练所有的SVM,只需要重新训练和增加语音样本相关的分类器在训练单个模型时,相对速度较快

  缺点:所需构造和测试的二值分类器的数量关于k成二次函数增长总训练时间和测试时间相对较慢

  从“一对一”的方式出发,出现了有向无环图(DirectedAcyclic Graph)的分类方法。


图1 有向无环图

        直接方法尽管看起来简洁,但是在最优化问题求解过程中的变量远远多于第一类方法,训练速度不及间接方法,而且在分类精度上也不占优。当训练样本数非常大时,这一问题更加突出。正因如此,间接方法更为常用。


 


http://chatgpt.dhexx.cn/article/iPJ31Aag.shtml

相关文章

使用SVM分类器进行图像多分类

ResNet backbone SVM分类器 对于样本较为均衡小型数据集,SVM作为分类器的效果与MLP的效果相近。 从经验上看,对于样本不均衡的大型数据集,MLP的效果强于SVM。 本博客在自己的小型数据集上进行实验,本来使用MLP已经达到很好的效果…

SVM分类器原理详解

第一层、了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化&#xff0c…

【CV-Learning】线性分类器(SVM基础)

数据集介绍(本文所用) CIFAR10数据集 包含5w张训练样本、1w张测试样本,分为飞机、汽车、鸟、猫、鹿、狗、蛙、马、船、卡车十个类别,图像均为彩色图像,其大小为32*32。 图像类型(像素表示) 二…

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 作者:July 。致谢:pluskid、白石、JerryLead。说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年1月。 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和…

[机器学习] 支持向量机通俗导论节选(一)

本文转载自:http://blog.csdn.net/v_july_v/article/details/7624837 支持向量机通俗导论(理解SVM的三层境界) 作者: July、pluskid ; 致谢:白石、J erryLead 出处:结构之法算法之道 blog …

机器学习之旅---SVM分类器

本次内容主要讲解什么是支持向量,SVM分类是如何推导的,最小序列SMO算法部分推导。 最后给出线性和非线性2分类问题的smo算法matlab实现代码。 一、什么是支持向量机(Support Vector Machine) 本节内容部分翻译Opencv教程: http://docs.open…

人工智能学习笔记 实验五 python 实现 SVM 分类器的设计与应用

学习来源 【机器学习】基于SVM人脸识别算法的一些对比探究(先降维好还是先标准化好等对比分析)_○( ^皿^)っHiahiahia…的博客-CSDN博客 实验原理 有关svm原理 请移步该篇通俗易懂的博客 机器学习算法(一&#xff0…

Matlab-SVM分类器

支持向量机(Support Vector Machine,SVM),可以完成对数据的分类,包括线性可分情况和线性不可分情况。 1、线性可分 首先,对于SVM来说,它用于二分类问题,也就是通过寻找一个分类线(二维是直线&…

UGUI——RectTransform详解

什么是RectTransform 创建一个UGUI控件时,查看其Inspector面板,原先熟悉的Transform已经被替换成RectTransform,面板也与原先的Transform的面板相去甚远。 先看看Unity官方对RectTransform的描述: Position, size, anchor and pi…

【Unity3D】UGUI之Button

1 Button属性面板 在 Hierarchy 窗口右键,选择 UI 列表里的 Button 控件,即可创建 Button 控件,选中创建的 Button 控件,按键盘【T】键,可以调整 Button 控件的大小和位置。创建 Button 控件时,系统会自动给…

UGUI基础

UGUI基础 ##1、UGUI概述 1.1、Unity界面发展史 【老版本界面onGUI】>【GUI插件NGUI】>【新版本界面UGUI】 1.2、UGUI特点 新的UI系统是从Unity4.6开始被集成到Unity编译器中的。Unity官方给这个新的UI系统赋予的标签是:灵活,快速和可视化。 对…

【Unity基础】ugui的案例篇(个人学习)

文章目录 前言案例1、点击游戏物体改变一次颜色,被UI遮挡的情况下点击无效1.动态图演示2.实现方式I.实现方案1 通过射线检测实现 3.源码演示Lua部分代码CSharp部分代码 案例2、圆形图片的制作1.图演示2.实现方式I.实现方案1 使用Mask组件实现II.实现方案2 通过重写G…

Unity UGUI源码解析

前言 这篇文章想写的目的也是因为我面试遇到了面试官问我关于UGUI原理性的问题,虽然我看过,但是并没有整理出完整的知识框架,导致描述的时候可能自己都是不清不楚的。自己说不清楚的东西,别人就等于你不会。每当学完一个东西的时…

UGUI基础学习

目录 TEXT IMAGE ROWIMAGE TEXT fontsize:字体 color:字体颜色 ;inespacing:字行间隔 代码展示: using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI;public class TEXTtest : MonoBehaviour {p…

UGUI源码解析——总览

一:图像相关 ——UIBehaviour:UI组件的基类,继承MonoBehaviourUGUI源码解析——UIBehaviour——CanvasUpdateRegistry:图像、布局重建注册器UGUI源码解析——CanvasUpdateRegistry——ICanvasElement:图像、布局重建接…

UGUI 全方位了解

随着 unity3d 4.6 ~ 5.x 新 UI 系统终于与大家见面了。这篇文章将不会介绍如何使用按钮、滚动条之类的UI控件,这些内容可以参考 Unity Manual;这篇文章的重点是,如何理解 UI 系统的设计,以便更好的在实际中使用它。 RectTransfor…

UI框架(UGUI)

整个游戏的工程源码下载链接:点击打开链接 可以参考的写的Demo和本文章来学习 毕竟有些细节问题在文章中不能一一说到 工具:VS2010、Unity5.2.3f 先介绍整个Demo的主面板 其中任务、技能、符文等等都是按钮,点击按钮会生成相应面板 【Pro…

UGUI相关使用

UGUI 文章目录 UGUI1.六大基础组件概述1.1 Canvas组件1.2 CanvasScaler组件1.3 Graphic Raycaster组件1.4 Event System组件1.5 Standalone Input Module组件1.6 RectTransform组件 2.三大基础控件概述2.1 图像控件Image2.2 文本控件Text2.3 RawImage原始图像组件 3.七大组合控…

Unity UGUI系统

UI系统对比 对 UI 系统的选择取决于是为 Unity 编辑器开发 UI,还是为游戏或应用程序开发运行时 UI。 UI 的类型UI 工具包Unity UI(uGUI)IMGUI注意事项运行时(调试)✔ *✔✔这指用于调试用途的临时运行时 UI。运行时(游戏内&…

UGUI 详解

1.RectTransform RectTransform组件 继承自Transform组件,是2D界面中元素的Transform。 对比Transform增加了新的属性分别是:Anchor(锚点)和 Pivot(轴心点)。 属性: localPosition:图…