阿里云高并发解决方案

article/2025/9/20 10:08:28

今天这篇帖子我会讲解一下金蝶财务软件K3_CLOUD高并发部署在阿里云上得解决方案,本篇博客同样适用于其他软件高并发上云部署

以我去年12月份的一个客户项目为例。

做过项目的朋友都知道,小客户比较关注的是成本,大客户关注的是价值和服务。高并发客户一般都会有专业的IT运维人员,会非常关心软件运行的稳定性和安全性,用单单一台云服务器做部署是很难满足客户的需求的而且会带来很大的安全隐患。

这里我们会用到集群部署方式,这种方式的好处就是能确保多台云服务器同时为业务提供服务,一台服务器即使出了问题,还会有其他云服务器可以分担用户请求。除非是所有应用服务器同时出问题,否则业务就不会被中断,那么留给我们进行售后处理问题的时间就非常充裕,同时也大大降低了服务商的服务成本。

在描述部署方案之前,我这边先大概介绍一下项目的情况:这里我就以A客户来描述
A公司2018年12月份购买了金蝶K3CLOUD7.2版本 用户数300

客户诉求

1.曾经有业务系统中过勒索病毒,要确保软件的高可用和数据安全。
2.三家工厂和多个分公司分布在全国各地,需确保网络稳定和数据传输的安全性。
3.数据库要做容灾,最好有异地备份容灾,可以实现秒级恢复。
4.实现VPC专有网络,实现不同业务系统之间二层隔离。
5.实现云后台账号管控和权限组管理,分职权进行人员和云上资产管理。

架构设计

架构图

方案特点

高可用性:
1、通过SLB负载均衡,将用户请求分发至多台应用服务器确保业务不中断,任意一台服务器出现问题,都不会影响软件的正常使用。

2、数据库采用阿里云RDS SQLSEVER 2012 双机,一主一备实现高可用, 两台数据库数据库实时同步,主机宕机备用立刻实现无缝切换。

安全性:
1、应用服务器通过安骑士进行基础防护,可以实现病毒木马查杀,同时提供系统漏洞修复。

2、OSS备份存储可为应用服务器提供磁盘备份及镜像功能,可设置自动备份策略及回滚恢复。

3、DBS数据库备份可为RDS数据库提供备份,可设置备份策略及秒级恢复。

4、通过智能接入网关或


http://chatgpt.dhexx.cn/article/i3ktJOT8.shtml

相关文章

高并发解决方案相关面试题

什么是DNS解析域名 DNS域名解析就是讲域名转化为不需要显示端口(二级域名的端口一般为80)的IP地址,域名解析的一般先去本地环境的host文件读取配置,解析成对应的IP地址,根据IP地址访问对应的服务器。若host文件未配置…

Token高并发解决方案

Token高并发解决方案 一:作为token使用的第三方 客户端模式使用token 可以采用单例模式或定义一个全局变量isRefresh 标志,加同步锁Synchronized来保证token过期的那个时间点,刷新token方法只被调用一次。 二:作为token服务器端…

大数据和高并发解决方案

一、网站应用背景 开发一个网站的应用程序,当用户规模比较小的时候,使用简单的:一台应用服务器一台数据库服务器一台文件服务器,这样的话完全可以解决一部分问题,也可以通过堆硬件的方式来提高网站应用的访问性能&…

电商中常见的高并发解决方案

目录 多级缓存 什么叫多级缓存 多级缓存的实现思路 Redis 缓存同步 MySql 数据 Nginx 限流 什么是限流 常见的限流算法之漏桶算法 nginx 限流的方式 控制速率 控制并发量(连接数) 在本文中,我们将以京东为例,了解电商中…

【数据科学】斯皮尔曼的等级相关系数(Spearman's coefficient)

在统计数据中,斯皮尔曼的等级相关系数或斯皮尔曼的rho,以查尔斯斯皮尔曼命名并经常用希腊字母表示或,是秩相关的非参数度量(两个变量的排名之间的统计依赖性)。它评估了使用单调函数描述两个变量之间关系的程度。 两个…

python 利用Scipy计算person 和spearman相关系数

python 利用Scipy计算person 和spearman相关系数 觉得有用的话,欢迎一起讨论相互学习~ 学习以下两位大佬的讲解 (Pearson)皮尔逊相关系数和spearman相关系数(附python实现) 相关性系数及其python实现 皮尔逊相关系数 下面是皮尔逊相关系数的计算公式…

Python+pandas计算数据相关系数(person、Kendall、spearman)

pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数、Kendall Tau相关系数和spearman秩相关)。 pandas相关系数-DataFrame.corr()参数详解 DataFrame.corr(methodpearson, min_p…

相关性Correlations 皮尔逊相关系数(pearson)和斯皮尔曼等级相关系数(spearman)

相关性Correlations Correlations,相关度量,目前Spark支持两种相关性系数:皮尔逊相关系数(pearson)和斯皮尔曼等级相关系数(spearman)。相关系数是用以反映变量之间相关关系密切程度的统计指标。…

spearman学习

特征提取,预测都弄完了,现在要检查一下预测的效果。 spearman秩相关系数是度量两个变量之间的统计相关性的指标,用来评估当用单调函数来描述两个变量之间的关系有多好。在没有重复数据的情况下,如果一个变量是另外一个变量的严格…

R语言中进行Spearman等级相关分析

摘要 使用Spearman等级相关性测试两个等级变量或一个等级变量和一个测量变量之间的关联。 如果您担心非正态性,也可以对两个测量变量使用Spearman等级相关性而不是线性回归/相关性,但这通常不是必须的。 宏伟的军舰鸟(军舰鸟magnificens&…

相关系数pearson、spearman、kendall和R语言中的cor/or.test()

相关系数pearson、spearman、kendall和R语言中的cor/cor.test 1. 相关系数pearson、spearman、kendall2. R语言cor函数和cor.test函数 1. 相关系数pearson、spearman、kendall Pearson相关系数很简单,是用来衡量两个数据集的线性相关程度;而Spearman相关…

皮尔逊(Pearson)相关系数与spearman相关系数(Python实现)

概念介绍 相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度。 相关系数大小解释 相关性绝对值无相关0 - 0.09弱相关0.1 - 0.3中相关0.3 - 0.5强相关0.5 - 1 表中所定的标准从某种意义上说是武断的和不严格的。 对相关系数的解…

3.1 相关系数(person与spearman)

1.1总体皮尔逊(person)相关系数: 在概率论与数理统计中我们学到,若两组数据X{x1,x2…xn}与Y{y1,y2…yn}为总体数据,则总体协方差为 它表示两个变量的总体误差,若XY相对于各自均值同…

斯皮尔曼相关(spearman)系数法

在分析指标与指标、指标与研究对象的影响程度时,很多时候会用到相关系数法,下面介绍一下斯皮尔曼相关系数法。 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,斯皮尔曼等级…

Spearman 相关性分析法,以及python的完整代码应用

Spearman 相关性分析法 简介 Spearman 相关性分析法是一种针对两个变量之间非线性关系的相关性计算方法,同时,它不对数据的分布进行假设。该方法的基本思想是将两个(也可以多个)变量的值进行排序,并计算它们之间的等…

统计学三大相关系数之斯皮尔曼(spearman)相关系数

斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解,这种表征形式就没有了求皮尔森相关性系数时那些限制。下面来看一下它的计算公式:…

相关系数(皮尔逊pearson相关系数和斯皮尔曼spearman等级相关系数)

目录 总体皮尔逊Person相关系数: 样本皮尔逊Person相关系数: 两点总结: 假设检验:(可结合概率论课本假设检验部分) 皮尔逊相关系数假设检验: 更好的方法:p值判断方法 皮尔逊相…

三大统计学相关系数(pearson、kendall、spearman)

一、皮尔逊相关系数 前边文章讲了很多了,这里不详细讲了,想了解的可以看这篇。 相似度计算(2)——皮尔逊相关系数 适用范围: 当两个变量的标准差都不为零时,相关系数才有定义,皮尔逊相关系数适…

Pearson相关系数和Spearman相关系数的区别

Pearson相关系数和Spearman相关系数的区别 1、协方差、相关系数2、Pearson相关系数3、Spearman相关系数3.1 定义3.2 什么时候用 4、两者的区别点4.1 线性相关与单调相关4.2 前提假设不同4.3 变量正态分布与否 5、实例展示6、参考资料 参考资料前两个博客讲解的非常详细&#xf…

Pearson相关系数, Spearman相关系数,Kendall相关系数

三个相关性系数(pearson, spearman, kendall)反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到1,0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。 1.…