时间序列预测的20个基本概念总结

article/2025/8/27 2:50:58

1、时间序列

时间序列是一组按时间顺序排列的数据点

比如:

  • 每小时的气压
  • 每年的医院急诊
  • 按分钟计算的股票价格

2、时间序列的组成部分

时间序列数据有三个主要组成部分。

  • 趋势
  • 季节性
  • 残差或白噪声

3、趋势

在时间序列中记录的长期缓慢变化/方向。

4、季节性

季节性是在固定时间内发生的时间序列中的循环模式。

下面的时间序列显示了季节性,在每个周期中,都处于底部和峰值,模式相似。

5、残差/白噪声

这是一个时间序列的模式,完全是随机的,不能用趋势或季节成分来解释。

6、时间序列分解

时间序列分解是将时间序列分解为其组成部分的过程,即趋势,季节性和残差。

在上图显示了时间序列数据,数据下面的图中被分解为其组成部分。

“残差”显示的是时间序列中无法用趋势或季节性解释的模式。这些表示数据中的随机性。

我们可以使用如下所示的statmodels库来分解时间序列。

 import pandas as pd import matplotlib.pyplot as pltfrom statsmodels.tsa.seasonal import STLdf = pd.read_csv("time-series-data.csv")decomposition = STL(df['x'], period=12).fit()

decomposition可以进一步绘制如下:

 fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, ncols=1, sharex=True,figsize=(10,8))ax1.plot(decomposition.observed)ax1.set_ylabel('Observed')ax2.plot(decomposition.trend)ax2.set_ylabel('Trend')ax3.plot(decomposition.seasonal)ax3.set_ylabel('Seasonal')ax4.plot(decomposition.resid)ax4.set_ylabel('Residuals')plt.tight_layout()

7、时间序列预测

预测是基于历史时间数据在以后时间上进一步预测数据点的过程。

这可以使用统计模型来完成,例如:

  • 自回归(AR)模型
  • 移动平均(MA)模型
  • 自回归移动平均(ARMA)模型
  • 自回归综合移动平均(ARIMA)模型
  • 季节自回归综合移动平均(SARIMA)模型
  • 带有外源回归量的季节自回归综合移动平均(SARIMAX)模型
  • 向量自回归(VAR)模型
  • 矢量误差校正(VECM)模型

对于较大的数据集,使用以下提到的深度学习模型:

  • 多层感知器(MLP)
  • 循环神经网络(RNN)
  • 长短期记忆网络(LSTM)
  • 自回归LSTMs
  • 卷积神经网络(CNN)

8、预测范围

根据历史时间序列数据预测未来数据点的时间段。

例如根据10年记录的每日气温数据,预测下一周的气温。

在这种情况下,预测范围是一周的时间。

9、预测模型基本步骤

时间序列预测模型主要由以下步骤组成:

  • 收集时间序列数据
  • 开发预测模型
  • 将模型部署到生产环境中
  • 收集新数据
  • 监控和评估模型性能
  • 重新训练预测模型
  • 将新模型部署到生产环境中
  • 返回步骤4

10、时间序列预测与回归

下面是时间序列预测与回归任务的主要区别。

时间序列数据是有序的。这意味着观察/数据点依赖于以前的观察/数据点。因此,在模型训练期间,数据点顺序不会被打乱。

时间序列预测处理随时间收集的数据。而回归可以处理不同类型的数据。

11、Naïve预测与基线模型

基线模型是使用naïve对时间序列数据进行预测构建的最简单的模型。作为比较其他预测模型的基线。

以下假设可用于创建基线模型:

  • 未来值与时间序列中的最后一个数据点相同
  • 未来值与某一时期内的值的中位数/众数相同
  • 未来的值等于一定时期内的平均值
  • 未来的值与一定时期内的所有值相同

12、错误指标

准确预测的目的是最小化数据中预测值与实际值之间的差距。所以有各种错误指标用于监视和最小化这种差距。

常用的误差指标如下:

  • 均方误差 (MSE)
  • 平均绝对误差 (MAE)
  • 均方根误差 (RMSE)
  • 平均绝对百分比误差 (MAPE)

13、平稳性

平稳的时间序列是其统计性质不随时间变化的序列,这些统计属性包括:

  • 均值
  • 方差
  • 自相关性

一般的统计预测方法(AR、MA、ARMA)都假定时间序列是平稳的。所以如果非平稳时间序列数据与这些一起使用,结果将是不可靠的。

14、变换

变换可以认为是使时间序列平稳的数学过程。常用的变换有:

差分计算从一个时间步到另一个时间步的变化。有助于在时间序列数据中获得恒定的均值。

要应用差分,我们只需从当前时间步长的值中减去之前时间步长的值。

一阶差分:对数据应用一次的差分;二阶差分:对数据应用两次的差分

对数函数应用于时间序列以稳定其方差,但是对数变换后需要进行逆向变换,将最终的结果进行还原。

15、Dickey-Fuller (ADF) 检验

Augmented Dickey-Fuller (ADF) Test是一种用于时间序列数据的经济统计学检验方法,用于确定一个时间序列是否具有单位根(unit root)。单位根表示时间序列具有非平稳性,即序列的均值和方差不随时间变化而稳定。ADF测试的目的是确定时间序列是否具有趋势,并且是否可以进行经济统计学分析。

ADF测试的核心假设是,如果时间序列具有单位根,则序列是非平稳的。反之,如果序列不具有单位根,则序列是平稳的。ADF测试通过对序列进行回归分析来验证这些假设。

我们可以直接使用statsmodels来进行这个检验

 from statsmodels.tsa.stattools import adfullerADF_result = adfuller(time_series)print(f"ADF Result Value: {ADF_result[0]}")print(f"ADF Result p-value: {ADF_result[1]}")

16、自相关

是对时间序列中由不同时间步长隔开的值之间线性关系的度量。滞后是分隔两个值的时间步数。

自相关函数(ACF)图用于测试时间序列中的值是否随机分布或彼此相关(如果时间序列具有趋势)。

 from statsmodels.graphics.tsaplots import plot_acfplot_acf(time_series, lags = 20)

这里的x轴上的值表示滞后,y轴上的值表示由滞后分隔的不同值之间的相关性。

如果y轴上的任何值位于图的蓝色阴影区域,则该值在统计上不显著,比如下面的ACF图显示其值之间没有相关性(除了第一个与自身相关的值)。

17、平滑方法

平滑方法(Smoothing Methods)是一种用于对时间序列数据进行平滑处理的技术,以便更好地观察数据的趋势和季节性成分。这些方法的目标是减少随机噪声,突出数据中的长期变化模式。

常见的有:移动平均法(Moving Average Method)、加权移动平均法(Weighted Moving Average Method)、指数平滑法(Exponential Smoothing Method)、季节性平滑法(Seasonal Smoothing Method)

18、时间序列数据特征

  1. 静态时间序列(Static Time Series):静态时间序列是指数据在时间上没有变化的情况下进行分析。也就是说,它假设观测到的时间序列数据是固定的,没有随时间的推移而发生变化。在静态时间序列中,我们通常关注数据的平均水平、趋势和季节性等静态特征。常见的静态时间序列模型包括平均数模型、指数平滑模型和ARIMA模型等。
  2. 动态时间序列(Dynamic Time Series):动态时间序列是指数据在时间上呈现出变化的情况下进行分析。也就是说,它认为观测到的时间序列数据是随时间变化的,并且过去的值对未来的值有影响。在动态时间序列中,我们关注数据的动态性、趋势变化和周期性等动态特征。常见的动态时间序列模型包括自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)和向量自回归模型(VAR)等。

静态时间序列假设数据在时间上没有变化,主要关注数据的静态特征。动态时间序列考虑数据在时间上的变化,并关注数据的动态特征。静态时间序列可以看作是动态时间序列的特例,当数据在时间上没有变化时,可以将其视为静态时间序列。

19、季节性(Seasonality),循环性(Cyclicity) 区别

季节性(Seasonality)和循环性(Cyclicity)都是描述时间序列数据中重复出现的模式,但它们之间存在一些区别。

季节性是在较短的时间尺度内,由于固定或变化的季节因素引起的周期性模式,而循环性则是在较长时间尺度内,由于经济或其他结构性因素引起的周期性模式。

季节性(Seasonality)是指时间序列数据中由于季节因素引起的重复模式。这种模式通常是在较短的时间尺度内(例如每年、每季度、每月或每周)出现的,并且在不同时间段内的观测值之间存在明显的相似性。季节性可以是固定的,即在每个季节周期内的模式相对稳定,例如每年夏天都有高温;也可以是非固定的,即在季节周期内的模式可能有变化,例如某个季节的销售量在不同年份间波动。

循环性(Cyclicity)是指时间序列数据中具有较长周期性的模式。这种模式的周期可以大于或小于季节周期,并且循环性的持续时间通常比季节性更长。循环性可能是由经济、商业或其他结构性因素引起的,与季节性不同,循环性的模式不一定按照固定的时间间隔出现,而是根据外部因素的影响而变化。例如,房地产市场的周期性波动就是一个循环性的例子。

20、时间序列库推荐

PyFlux: PyFlux是一个用于时间序列分析和建模的库,提供了多种模型,包括ARIMA、GARCH、VAR等。

PyCaret: PyCaret是一个用于机器学习和自动化建模的库,它提供了简化时间序列预测任务的工具。它支持自动特征选择、模型选择和调优等功能,可以快速构建时间序列预测模型。

sktime: sktime是一个专门用于时间序列数据的机器学习库,它建立在scikit-learn之上,并提供了许多专门针对时间序列的预处理和建模技术。

CausalImpact: CausalImpact是一个用于因果效应分析的库,它可以帮助评估时间序列数据中某个事件或处理对结果的影响。

tsfresh: tsfresh是一个用于提取时间序列特征的库,它提供了各种统计和时间特征提取方法,用于时间序列数据的特征工程。

https://avoid.overfit.cn/post/7bc21f124d284b47becbeca6dc5c07c7

作者:Ashish Bamania


http://chatgpt.dhexx.cn/article/gyityZj1.shtml

相关文章

时间序列-预测(Forcasting):时间序列预测算法总结

一、背景介绍 绝大部分行业场景,尤其是互联网、量化行业,每天都会产生大量的数据。金融领域股票价格随时间的走势;电商行业每日的销售额;旅游行业随着节假日周期变化的机票酒店价格等; 我们称这种不同时间收到的,描述一个或多种特征随着时间发生变化的数据,为时间序列…

时间序列预测 | ARMA应用指南

ARMA可谓是时间序列最为经典常用的预测方法,广泛应有于涉及时间序列的各个领域。ARMA模型自出道以来,出场次数不可胜数。想必大家也都不陌生,常学常新,我们今天不妨再来回顾一遍~。 ARMA全称Autoregressive moving ave…

时间序列预测的7种方法

import pandas as pd#取数 #dfpd.read_csv(jetrail.csv) #print(df.head()) ID Datetime Count 0 0 25-08-2012 00:00 8 1 1 25-08-2012 01:00 2 2 2 25-08-2012 02:00 6 3 3 25-08-2012 03:00 2 4 4 25-08-2012 04:00 2#pr…

Transformer时间序列预测

介绍: 提示:Transformer-decoder 总体介绍 本文将介绍一个 Transformer-decoder 架构,用于预测Woodsense提供的湿度时间序列数据集。该项目是先前项目的后续项目,该项目涉及在同一数据集上训练一个简单的 LSTM。人们认为 LSTM 在…

时间序列预测的8种常用方法简介

时间序列预测的7种方法 1. 朴素预测法(Naive Forecast) 如果数据集在一段时间内都很稳定,我们想预测第二天的价格,可以取前面一天的价格,预测第二天的值。这种假设第一个预测点和上一个观察点相等的预测方法就叫朴素法&#xff…

常见的时间序列预测模型python实战汇总

最完整的时间序列分析和预测(含实例及代码):https://mp.weixin.qq.com/s/D7v7tfSGnoAqJNvfqGpTQA 1 时间序列与时间序列分析 在生产和科学研究中,对某一个或者一组变量 x(t)x(t) ARIMA 模型对时间序列的要求是平稳型。因此&#…

时间序列预测模型

时间序列数据一般有以下几种特点:1.趋势(Trend) 2. 季节性(Seasonality)。 趋势描述的是时间序列的整体走势,比如总体上升或者总体下降。下图所示的时间序列是总体上升的: 季节性描述的是数据的周期性波动,比如以年或者周为周期&…

【数据分析】基于时间序列的预测方法

时间序列预测 目录 时间序列预测1.时间序列介绍2.原始数据集3.导入数据4.检测时间序列的平稳性5.如何使时间序列平稳5.1 估计和消除趋势5.1.1 对数转换5.1.2 移动平均 5.2 消除趋势和季节性5.2.1 差异化5.2.2 分解 6.预测时间序列6.1 AR Model6.2 MA Model6.3 Combined Model6.…

Matlab实现时间序列预测

文章目录 一、数据准备二、时间序列预测分类1、输入为xt,输出是yt2、有x值,有y值:NARX(1)选择模型类型(2)选择输出,只有y_t(3)选择70%用来作为训练数据,15%用来作为验证使用,15%用来测试(4)选择delay(5)开始…

【时序预测】Transformer模型在时间序列预测领域的应用

今天又是一篇Transformer梳理文章,这次应用场景是时间序列预测。Transformer的序列建模能力,让其天然就比较适合时间序列这种也是序列类型的数据结构。但是,时间序列相比文本序列也有很多特点,例如时间序列具有自相关性或周期性、…

11种常见的时间序列预测方法

参考内容:4大类11种常见的时间序列预测方法总结和代码示例 代码地址: https://github.com/SeafyLiang/machine_learning_study/blob/master/time_series 11种常见的时间序列预测方法 1、指数平滑Exponential Smoothing2、Holt-Winters 法3、自回归 (AR)…

时间序列预测方法最全总结!

时间序列预测就是利用过去一段时间的数据来预测未来一段时间内的信息,包括连续型预测(数值预测,范围估计)与离散型预测(事件预测)等,具有非常高的商业价值。 需要明确一点的是,与回归…

时间序列(一):时间序列数据与时间序列预测模型

时间序列系列文章: 时间序列(一):时间序列数据与时间序列预测模型 时间序列(二):时间序列平稳性检测 时间序列(三):ARIMA模型实战 时间序列及其预测是日常工…

组合预测模型 | ARIMA-LSTM时间序列预测(Python)

组合预测模型 | ARIMA-LSTM时间序列预测(Python) 目录 组合预测模型 | ARIMA-LSTM时间序列预测(Python)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 ARIMA-LSTM时间序列预测(Python完整源码和数据&#xff09…

时间序列预测系列文章总结(代码使用方法)

前言 这篇文章是对前面所写的LSTM时序预测文章的代码使用方法的总结。强烈建议使用代码前先阅读本文,而不是直接询问! 此外,代码数据中除了负荷列其他列都已经归一化了,所以代码中只对负荷列进行了归一化,如果使用自己…

4大类11种常见的时间序列预测方法总结和代码示例

本篇文章将总结时间序列预测方法,并将所有方法分类介绍并提供相应的python代码示例,以下是本文将要介绍的方法列表: 1、使用平滑技术进行时间序列预测 指数平滑Holt-Winters 法 2、单变量时间序列预测 自回归 (AR)移动平均模型 (MA)自回归…

【深度学习时间序列预测案例】零基础入门经典深度学习时间序列预测项目实战(附代码+数据集+原理介绍)

🚨注意🚨:最近经粉丝反馈,发现有些订阅者将此专栏内容进行二次售卖,特在此声明,本专栏内容仅供学习,不得以任何方式进行售卖,未经作者许可不得对本专栏内容行使发表权、署名权、修改…

如何理解vcc,vdd,vss

常见解释 VCC: Ccircuit 表示电路的意思, 即接入电路的电压 VDD:Ddevice 表示器件的意思, 即器件内部的工作电压 VSS: Sseries 表示公共连接的意思,通常指电路公共接地端电压 个人理解 VCC :双极器件的正,一…

VCC,GND,VSS,VDD的理解

Definition: VCC:Ccircuit 表示电路的意思, 即接入电路的电压。 GND:在电路里常被定为电压参考基点。 VDD:Ddevice 表示器件的意思, 即器件内部的工作电压 VSS:Sseries 表示公共连接的意思,通常指电路公共接…