目标检测算法——YOLOV7——详解

article/2025/8/24 17:31:59

1、主要贡献

    主要是现有的一些trick的集合以及模块重参化和动态标签分配策略,最终在 5 FPS 到 160 FPS 范围内的速度和准确度都超过了所有已知的目标检测器。

    当前目标检测主要的优化方向:更快更强的网络架构;更有效的特征集成方法;更准确的检测方法;更精确的损失函数;更有效的标签分配方法;更有效的训练方法。

2、主要思路

    按照论文,目前模型精度和推理性能比较均衡的是yolov7 模型(对应的开源git版本为0.1版)。根据源码+导出的onnx文件+“张大刀”等的网络图(修改了其中目前我认为的一些bug,增加一些细节)。重新绘制了yoloV7 0.1版本的非常详尽网络结构。注意:

    1)其中的特征图结果维度注释是按照箭头的流方向,不是固定的上下方向。

    2)输入输出仅仅是指当前模块的输入输出,整体需要根据流方向累乘计算最终的结果。

    3)该模型版本没有辅助训练头。

    整体上和YOLOV5是相似的,主要是网络结构的内部组件的更换(涉及一些新的sota的设计思想)、辅助训练头、标签分配思想等。整体预处理、loss等可参考yolov5: 目标检测算法——YOLOV5_TigerZ*的博客-CSDN博客_目标检测yolov5

    

3、具体细节

    1)input

    整体复用YOLOV5的预处理方式和相关源码,唯一需要注意的是,官方主要是在640*640和1280*1280这样的相对较大的图片上进行的训练和测试。

    具体参考我的另一篇YOLOV5博客中的 “具体细节” -> ‘input’ 章节即可。目标检测算法——YOLOV5_TigerZ*的博客-CSDN博客_目标检测yolov5

    2)backbone

    主要是使用ELAN(该版本模型并没有使用论文里提到的最复杂的E-ELAN结构) 和 MP 结构。该版本模型的激活函数使用的是Silu。

    详细可以参考源码的 cfg/training/yolov7.yaml 文件 + models/yolo.py 文件 + 使用 export.py 导出onnx 结构使用 netron等软件来梳理。

    a.ELAN结构

    通过控制最短最长的梯度路径,更深的网络可以有效地学习和收敛。作者提出ELAN结构。基于ELAN设计的E-ELAN 用expand、shuffle、merge cardinality来实现在不破坏原有梯度路径的情况下不断增强网络学习能力的能力。(PS:该版本模型以及E6E网友反馈均未实现E-ELAN),论文中相关的图如下,其中的cross stage connection 其实就是1*1卷积:

    简化如下:

    

    

b.MP 结构

    个人认为这是一个相对鸡贼的结构,之前下采样我们通常最开始使用maxpooling,之后大家又都选用stride = 2的3*3卷积。这里作者充分发挥:“小孩子才做选择,大人都要”的原则,同时使用了max pooling 和 stride=2的conv。  需要注意backbone中的MP前后通道数是不变的。

    

3)neck & head

    检测头整体结构和YOLOV5类似,仍然是anchor based 结构,仍然没有使用YOLOX 和YOLOV6 的解耦头(分类和检测)思路,这一点目前不太理解,后续有精力可以魔改一下。主要是使用了:

    *SPPCSPC结构

    *ELAN-W(我自己命名非官方名字,因为基本上和ELAN类似,但是又不是论文中的E-ELAN)

    *MP 结构(和backbone参数不同)

    *比较流行的重参数化结构Rep结构

    以上参见本篇博客中的“主要思路”中的整体图,里面就有可视化的这些部件,可以非常直观的理解这些结构。详细可以参考源码的 cfg/training/yolov7.yaml 文件 + models/yolo.py 文件 + 使用 export.py 导出onnx 结构使用 netron等软件来梳理。

4)loss function

    主要分带和不带辅助训练头两种,对应的训练脚本是train.py 和 train_aux.py。

    不带辅助训练头(分损失函数和匹配策略两部分讨论)。

    损失函数

    整体和YOLOV5 保持一致,分为坐标损失、目标置信度损失(GT就是训练阶段的普通iou)和分类损失三部分。其中目标置信度损失和分类损失采用BCEWithLogitsLoss(带log的二值交叉熵损失),坐标损失采用CIoU损失。详细参见utils/loss.py 里面的 ComputeLossOTA 函数 配合 配置文件里的各部分的权重设置。

    匹配策略

    主要是参考了YOLOV5 和YOLOV6使用的当下比较火的simOTA.

    S1.训练前,会基于训练集中gt框,通过k-means聚类算法,先验获得9个从小到大排列的anchor框。(可选)

    S2.将每个gt与9个anchor匹配:Yolov5为分别计算它与9种anchor的宽与宽的比值(较大的宽除以较小的宽,比值大于1,下面的高同样操作)、高与高的比值,在宽比值、高比值这2个比值中,取最大的一个比值,若这个比值小于设定的比值阈值,这个anchor的预测框就被称为正样本。一个gt可能与几个anchor均能匹配上(此时最大9个)。所以一个gt可能在不同的网络层上做预测训练,大大增加了正样本的数量,当然也会出现gt与所有anchor都匹配不上的情况,这样gt就会被当成背景,不参与训练,说明anchor框尺寸设计的不好。

    S3.扩充正样本。根据gt框的中心位置,将最近的2个邻域网格也作为预测网格,也即一个groundtruth框可以由3个网格来预测;可以发现粗略估计正样本数相比前yolo系列,增加了三倍(此时最大27个匹配)。图下图浅黄色区域,其中实线是YOLO的真实网格,虚线是将一个网格四等分,如这个例子中,GT的中心在右下虚线网格,则扩充右和下真实网格也作为正样本。

    S4.获取与当前gt有top10最大iou的prediction结果。将这top10 (5-15之间均可,并不敏感)iou进行sum,就为当前gt的k。k最小取1。

    S5.根据损失函数计算每个GT和候选anchor损失(前期会加大分类损失权重,后面减低分类损失权重,如1:5->1:3),并保留损失最小的前K个。

    S6.去掉同一个anchor被分配到多个GT的情况。

    

    带辅助训练头(分损失函数和匹配策略两部分讨论)

    论文中,将负责最终输出的Head为lead Head,将用于辅助训练的Head称为auxiliary Head。本博客不重点讨论,原因是论文中后面的结构实验实现提升比较有限(0.3个点),具体可以看原文。

    

    一些细节:其loss函数和不带辅助头相同,加权系数不能过大(aux head loss 和lead head loss 按照0.25:1的比例),否则会导致lead head出来的结果精度变低。匹配策略和上面的不带辅助头(只有lead head)只有很少不同,其中辅助头:

    *lead head中每个网格与gt如果匹配上,附加周边两个网格,而aux head附加4个网格(如上面导数第二幅图,匹配到浅黄+橘黄共5个网格)。

    *lead head中将top10个样本iou求和取整,而aux head中取top20。

    aux head更关注于recall,而lead head从aux head中精准筛选出样本。

    需要注意依照yolov5中的中心点回归方式,仅能将图中红色特征grid,预测在图中红色+蓝色区域(实线组成的网格代表着特征图grid,虚线代表着一个grid分成了4个象限),是根本无法将中心点预测到gt处(蓝色点)!而该红色特征grid在训练时是会作为正样本的。在aux head中,模型也并没有针对这种情况对回归方式作出更改。所以其实在aux head中,即使被分配为正样本的区域,经过不断的学习,可能仍然无法完全拟合至效果特别好。

    

5)trics

概述:ELAN设计思想、MP降维组件、Rep结构的思考、正负样本匹配策略、辅助训练头

6)inference

测试阶段(非训练阶段)过程

4、结果

打赏

        你的打赏是我不断分享的动力,羞羞。点这里,嘿嘿。

参考连接

1、yolov7 网络架构深度解析_所向披靡的张大刀的博客-CSDN博客

2、https://d246810g2000.medium.com/%E6%9C%80%E6%96%B0%E7%9A%84%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC%E7%8E%8B%E8%80%85-yolov7-%E4%BB%8B%E7%B4%B9-206c6adf2e69

3、【yolov7系列二】正负样本分配策略_所向披靡的张大刀的博客-CSDN博客+

4、https://arxiv.org/pdf/2207.02696.pdf

5、深入浅出 Yolo 系列之 Yolov7 基础网络结构详解 - 知乎

6、理解yolov7网络结构_athrunsunny的博客-CSDN博客

7、Yolov7算法卷土重来,精度速度超越所有Yolo算法,Yolov4作者全新力作!

8、深入浅出Yolov7之正负样本分配策略

9、yolov7正负样本分配详解 - 知乎

10、极市开发者平台-计算机视觉算法开发落地平台


http://chatgpt.dhexx.cn/article/f3kpTspt.shtml

相关文章

3D点云目标检测算法综述

一、概述 在3D点云目标检测领域,对于数据输入的处理一般有三种: 多视角。将三维点云投射到多个二维平面形成图像 体素,voxel,将三维点云切割成多个小块,这些小块就叫体素,类似像素。这是最自然的一种想法…

传统目标检测算法

目标分类:给一张图片,分类 目标检测:给一张图片,找到目标,并用矩形框画出 分类是对一幅图整体,检测是更进一步,找出一幅图中一部分。一般检测以分类为基础, 目标检测就是找出图像中…

目标检测算法基础

人脸检测算法综述 0 前言1 人脸检测算法难点2 人脸检测算法流程2.1 选择检测窗口2.2 提取图像特征2.3 设计分类器2.3.1 AdaBoost2.3.2 SVM分类器2.3.3 决策树与随机森林 3 人脸检测算法3.1 传统的人脸检测算法3.2 深度学习3.2.1 基于候选框的二阶段检测算法3.2.2 直接预测结果框…

目标检测算法回顾之传统算法

传统的目标检测算法 总体回顾基于特征基于分割 一般流程经典算法HarrAdaboost流程Harr特征Adaboost算法 HOG SVM概述方法HOG特征的优缺点 DPMDPM特征DPM流程 DPM vs HOG 总结 说明:本文仅供学习 虽然传统的目标检测方法现在比较少用,但我们认为有必要了…

目标检测算法发展综述

目标检测算法 一、目标检测算法二、目标检测算法存在的问题三、目标检测算法的基本流程四、传统的目标检测算法 1.Viola-Jones(VJ人脸检测算法)2.HOG SVM(行人检测,使用Opencv实现)3.DPM(物体检测&#xf…

目标检测算法研究

1、目标检测基本介绍 1.1、项目结构 1.2、目标检测的算法分类 1.2.1两步走的目标检测:先进行区域推荐、而后进行目标分类 代表算法 :R-CNN、 SPP-net、Fast-R-CNN、Faster R-CNN 1.2.2、端到端的目标检测:采用一种网络一步到位 代表&#x…

目标检测算法分类

目标检测算法分类: 1、两步走的目标检测:先找出候选的一些区域,再对区域进行调整分类 代表:R-CNN、SPP-net、Fast R-CNN、Faster R-CNN 2、端到端的目标检测:采用一个网络一步到位,输入图片,输…

目标检测算法

目标检测算法 一、目标检测算法二、目标检测算法存在的问题三、目标检测算法的基本流程四、传统的目标检测算法1.Viola-Jones(VJ人脸检测算法)2.HOG SVM(行人检测,使用Opencv实现)3.DPM(物体检测&#xff…

目标检测总结:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

目标检测总结:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 转自:七月在线实验室 一、目标检测常见算法 object detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解…

目标检测算法总结

一、基于候选区域的目标检测器 滑动窗口检测器 根据滑动窗口从图像中剪切图像块,把图像块处理成固定大小。随后输入CNN分类器中,提取特征。最后使用SVM分类器识别种类,并且用线性回归器得到边框。 选择性搜索selective search 首先将每个…

万字长文详解目标检测算法,超大超全(2022最新)

摘要 1 概述 2 目标检测回顾 2.1 two-stage 2.2 one-stage 3 目标检测配方 3.1 基础概念 3.1.1 损失函数 3.1.2 Anchor-based 和 Keypoint-based 3.1.3 NMS 3.2 目标检测中的挑战 4 目标检测中的Head 4.1 ThunderNet 4.2 You Only Look Once(YOLO) 4.3 Single Sh…

常见经典目标检测算法

1、目标检测基本概念 1.1 什么是目标检测 目标检测(Object Dectection)的任务是找出图像中所有感兴趣的目标(物体),确定他们的类别和位置。 1.2 目标检测要解决的核心问题 除图像分类外,目标检测要解决的核心问题是&#xff1a…

目标检测的各种算法总结

这里是引用腾讯云博客文章:一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 文章目录 一、目标检测常见算法二、传统的目标检测算法2.1 从图像识别的任务说起2.2 物体检测(Object Detection) 三、候选区域/窗 深度…

【NLP】预训练模型——GPT1

背景 废话不多说,先把三篇论文链接放出来:GPT1:Improving Language Understanding by Generative Pre-Training、GPT2:Language Models are Unsupervised Multitask Learners、GPT3:Language Models are Few-Shot Learners。李沐老师也在B站上放了介绍G…

ResNet50修改网络适应灰度图片并加载预训练模型

此博文是修改https://blog.csdn.net/jiacong_wang/article/details/105631229 这位大大的博文而成的,自己根据自己的情况稍微加了点东西 要修改的地方有4处 1.修改网络第一层,把3通道改为1 法一:直接在定义网络的地方修改 self.conv1 nn.…

TD-LTE R8 预编码学习笔记

预编码: MIMO系统中,当发射端通过某种方式获得一定的CSI(瞬时值,短期或中长期统计信息),就能通过一定的预处理方式对各个数据流加载的功率,速率乃至发射方向进行优化,并通过预处理在…

Task2-基于MobileaNet的预训练模型优化

##项目背景 mobilenet_v2_0.75_224 预训练模型是基于224224的训练集图片训练而来,需要通过imagenet 100M数据集把模型训练成适用于448448的预训练模型 ##思考的问题 1、预训练模型怎么使用和导入 2、如何在服务器上训练 3、如何把训练集弄出来 4、如何评价训练效果…

波束形成 基于对角加载的稳健自适应波束形成

前言 本人刚刚入门阵列信号处理的波束形成方向,因此仿真过程中可能会出现错误,如果诸位大佬发现仿真过程中有错误,请不吝指出谢谢。 对角加载(Diagonal Loading, DL)是一种比较常用的提高Capon波束形成器鲁棒性的方法,通过在样本协…

Unity大场景数据加载及优化方案

前段时间,有几个虚拟仿真公司跟我请教关于大地形的加载优化问题,它们使用的引擎都是自己研发的,引擎对于开发者来说,大同小异,它们的基本构造是一样的,关键是在于解决问题的方法,正是基于这个前…

预训练模型

目录 一、BERT1、贡献1.1 MLM任务1.2 NSP任务 2、实验细节 二、ALBERT1、贡献1.1 词向量分解1.2 层参数共享1.3 SOP任务 三、 ERNIE1、贡献2、实验细节2.1 语料2.2 MLM任务2.3 DLM任务 四、DistilBERT1、贡献2、实验细节 五、RoBERTa1、贡献2、实验细节2.1 动态mask2.2 去掉NSP…