卷积神经网络模型之——VGG-16网络结构与代码实现

article/2025/4/22 18:23:08

文章目录

  • VGGNet简介
  • VGG16网络结构
  • 使用pytorch搭建VGG16
    • features
    • classifier
    • 完整代码

VGGNet简介

VGG原文:Very deep convolutional networks for large-scale image recognition:https://arxiv.org/pdf/1409.1556.pdf

在这里插入图片描述
VGG在2014年由牛津大学Visual GeometryGroup提出,获得该年lmageNet竞赛中Localization Task(定位任务)第一名和 Classification Task (分类任务)第二名。

VGG与AlexNet相比,它采用几个连续的3x3的卷积核代替AlexNet中的较大卷积核。

在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,从而在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。
在这里插入图片描述
在论文中,作者尝试了使用5种不同的网络结构,深度分别为11,11,13,16,19,5种结构图如下所示:
在这里插入图片描述
其中最常用的是VGG16和VGG19,下面我们就以VGG16为例来分析它的网络结构。

VGG16网络结构

VGG16中的16指的是它由16层组成(13个卷积层 + 3个全连接层,不包括池化层)。

VGG的输入图像大小为224X224X3的三通道彩色图像,共有1000个类别。
在这里插入图片描述
其中卷积层的卷积核大小都为3,padding为1;池化层的kernel_size为2,stride为2。

因此

  • 卷积层只改变特征图的通道数,不改变大小。(W - 3 + 2*1)/ 1 + 1 = W
  • 池化层不改变特征图的通道数,大小变为原来的一半。

VGG具有明显的块结构,VGG可以分为如下六块:

  1. 两个卷积 + 一个池化:conv3-64+conv3-64 + maxpool
  2. 两个卷积 + 一个池化:conv3-128+conv3-128+ maxpool
  3. 三个卷积 + 一个池化:conv3-256+conv3-256+conv3-256+ maxpool
  4. 三个卷积 + 一个池化:conv3-512+conv3-512+conv3-512+ maxpool
  5. 三个卷积 + 一个池化:conv3-512+conv3-512+conv3-512+ maxpool
  6. 三个全连接:fc-4096 + fc-4096 + fc-1000(对应1000个类别)

使用pytorch搭建VGG16

为了便于理解,我们把正向传播过程分为两块,

  • 一块为特征提取层(features),包括13个卷积层;
  • 另一块为分类层(classify),包括3个全连接层。

features

def make_features(self):cfgs = [64, 64, 'MaxPool', 128, 128, 'MaxPool', 256, 256, 256, 'MaxPool', 512, 512, 512, 'MaxPool', 512, 512, 512, 'MaxPool']layers = []in_channel = 3for cfg in cfgs:if cfg == "MaxPool":    # 池化层layers += [nn.MaxPool2d(kernel_size=2,stride=2)]else:layers += [nn.Conv2d(in_channels=in_channel,out_channels=cfg,kernel_size=3,padding=1)]layers += [nn.ReLU(True)]in_channel = cfgreturn nn.Sequential(*layers)

classifier

【注意】:在进行全连接之前,需要现将卷积层输出的三维特征图展平为1维。

x = torch.flatten(x,start_dim=1)

self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, 1000)
)

完整代码

"""
#-*-coding:utf-8-*- 
# @author: wangyu a beginner programmer, striving to be the strongest.
# @date: 2022/7/1 15:01
"""
import torch
import torch.nn as nnclass VGG(nn.Module):def __init__(self):super(VGG, self).__init__()self.features = self.make_features()self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(p=0.5),nn.Linear(4096, 1000))def forward(self,x):x = self.features(x)x = torch.flatten(x,start_dim=1)x = self.classifier(x)return xdef make_features(self):cfgs = [64, 64, 'MaxPool', 128, 128, 'MaxPool', 256, 256, 256, 'MaxPool', 512, 512, 512, 'MaxPool', 512, 512, 512, 'MaxPool']layers = []in_channel = 3for cfg in cfgs:if cfg == "MaxPool":    # 池化层layers += [nn.MaxPool2d(kernel_size=2,stride=2)]else:layers += [nn.Conv2d(in_channels=in_channel,out_channels=cfg,kernel_size=3,padding=1)]layers += [nn.ReLU(True)]in_channel = cfgreturn nn.Sequential(*layers)net = VGG()
print(net)

在这里插入图片描述


http://chatgpt.dhexx.cn/article/XYqlZMxE.shtml

相关文章

关于VGGNet网络结构浅谈(主要是VGG16结构)

文章目录 1.首先看一下论文中一张表:2.VGG16网络结构解释:3.网络构成详解:4.VGG16使用的卷积核大小都是3x3的,使用比之前小的卷积核有什么作用:5.Tensorflow2.6.0实现VGG16网络结构: 1.首先看一下论文中一张…

深度学习之学习(1-1) VGG16网络结构详解

参见 ​​​​​​【深度学习】全面理解VGG16模型_florrie-CSDN博客_vgg16模型介绍深度学习-VGG16原理详解_£的博客-CSDN博客_vgg16 1、网络结构 根据卷积核大小和卷积层数,VGG共有6中配置,分别为A,A-LRN,B,C,D,E,其中D和E两种最为常…

【深度学习】全面理解VGG16模型

全面理解VGG16模型 VGG16的结构层次介绍结构图VGG16模型所需要的内存容量介绍卷积中的基本概念1.从input到conv1:2.从conv1到conv2之间的过渡:3.conv2到conv3:4.进入conv3:5.从conv3到conv4之间的过渡:6.最后到三层全连…

经典卷积神经网络---VGG16详解

一.VGG概述 VGGNet是牛津大学视觉几何组(Visual Geometry Group)提出的模型,该模型在2014ImageNet图像分类与定位挑战赛 ILSVRC-2014中取得在分类任务第二,定位任务第一的优异成绩。VGGNet突出的贡献是证明了很小的卷积,通过增加网络深度可以…

SpringCloud笔记

Eureka 一、不引入Eureka时 1.引入公共模块依赖 <!-- 引入公共模块依赖 --> <dependency><groupId>niit</groupId><artifactId>springcloud-api</artifactId> </dependency>引入后会发现Maven视图报错&#xff0c;此处需要在父工…

服务链路追踪怎么搞?好搞吗?

微服务架构是一个分布式架构&#xff0c;它按业务划分服务单元&#xff0c;一个分布式系统往往有很多个服务单元。由于服务单元数量众多&#xff0c;业务的复杂性&#xff0c;如果出现了错误和异常&#xff0c;很难去定位。主要体现在&#xff0c;一个请求可能需要调用很多个服…

java小白进阶之基础篇

JAVA基础语法归纳>>小白进阶~~java基础语法 >>Java概述 Java语言的发展历史 1991年出现&#xff0c;1995年正式发布 创始人&#xff1a;James Gosling 出生地&#xff1a;SUN 被Oracle公司在这里插入代码片 最新的JDK的版本&#xff1a; 2020年发布JDK14 Java体系…

WAF绕过总结+工具介绍

什么是WAF Waf是web应用防火墙&#xff08; Web Application Firewa‖l&#xff09;的简称&#xff0c;对来自Web应用程序客户端的各类请求进行内容检测和验证&#xff0c;确保其安全性与合法性&#xff0c;对非法的请求予以实时阻断&#xff0c;为web应用提供防护&#xff0c…

Java基础入门笔记(看到就是赚到)

一、初始java 1. 生活中的程序&#xff1a; 从起床到上班的过程 穿衣打扮—起床—洗漱—吃饭—出门—乘坐交通工具—到公司 2.计算机中的程序: 一组有序指令的集合,需要和计算机交流就要使用计算机语言&#xff0c;java就是计算机语言的一种 3.java能做什么&#xff1a; …

vue-plugin-hiprint vue hiprint vue使用hiprint打印控件VUE HiPrint HiPrint简单使用

vue-plugin-hiprint vue hiprint vue使用hiprint打印控件VUE HiPrint HiPrint简单使用 安装相关依赖安装 vue-plugin-hiprintJQuery安装 打印客户端 引入依赖打印 html 内容 - 简单使用根据模版打印 - 简单使用以下内容 和上面demo 没关系 &#xff01;&#xff01;&#xff01…

Kafka问题整理 (Too many open files等)/kafka重要参数总结

1.Kafka集群搭建好以后&#xff0c;运行一段时间Kafka节点挂掉&#xff0c;程序中出现如下错误 ERROR Error while accepting connection (kafka.network.Acceptor) java.io.IOException: Too many open files 或者 ERROR Error while deleting the clean shutdown file in…

picoCTF,Reverse Engineering,逆向类,42/55

picoCTF&#xff0c;Reverse Engineering&#xff0c;42/55 2019 picoCTF01、vault-door-training&#xff0c;50分02、vault-door-1&#xff0c;100分03、vault-door-3&#xff0c;200分04、vault-door-4&#xff0c;250分05、vault-door-5&#xff0c;300分06、vault-door-6&…

Java学习(12)(String类、String的查找方法、字符串转化、 替换、拆分、截取、trim方法、字符串的不可变性、StringBuilder和StringBuffer)

接上次博客&#xff1a;Java学习&#xff08;11&#xff09;&#xff1a;Java实现图书馆书库管理系统_di-Dora的博客-CSDN博客 目录 String类 构造字符串的方法&#xff1a; String 对象的比较 1、比较是否引用了同一个对象。 2、比较字符串内容是否相同 3、"int co…

渗透测试工具实战技巧合集

本文为作者总结自己在渗透测试中常用的一些小技巧。原文分为两部分&#xff0c;译者将其合二为一&#xff0c;方便大家查阅。 最好的 NMAP 扫描策略 # 适用所有大小网络最好的 nmap 扫描策略# 主机发现&#xff0c;生成存活主机列表 $ nmap -sn -T4 -oG Discovery.gnmap 192.1…

Netty堆外内存泄漏排查,这一篇全讲清楚了

上篇文章介绍了Netty内存模型原理&#xff0c;由于Netty使用不当会导致堆外内存泄漏&#xff0c;网上关于这方面的资料比较少&#xff0c;所以写下这篇文章&#xff0c;基于Netty4.1.43.Final&#xff0c;专门介绍排查Netty堆外内存相关的知识点&#xff0c;诊断工具&#xff0…

分支选择结构

分支语句又被称为选择结构&#xff0c;选择结构就是根据一个boolean表达式,来决定执行哪一些代码(代码块)。比较常见的分支语句有if语句和switch语句&#xff0c;下面将以代码的形式说明if和switch语句的基本构成以及其作用。 1、if语句&#xff1a;if语句作为选择语句&#xf…

选择结构。

1. 掌握if(如果)选择(分支)结构 注意&#xff1a; 经常会用到标志位&#xff0c;定义标志位的时候 也得考虑其位置 是局部变量还是全局变量 掌握基本if if(条件){// 条件成立时执行的内容 }掌握if-else(互斥) if(条件){// 条件成立 }else{// 条件不成立 }一般流程图也是这样…

C#选择结构

选择结构 概述IF选择语句if单分支选择结构if…else双分支选择结构if…else if…else多分支选择结构 switch选择语句基本语法 this关键字 概述 在程序当中&#xff0c;也存在选择语句&#xff0c;C#中共有2个选择语句&#xff1a;if和switch&#xff0c;if是单分支选择语句&…

5、选择结构

什么是选择结构 C程序的执行通常是按照顺序从上到下逐行执行。 而选择结构是根据某个变量或表达式的值来选择哪些语句执行&#xff0c;哪些语句不执行。 选择结构需要先进行条件判断&#xff08;对表达式的值判断&#xff09;&#xff0c;根据表达式的值选择是否执行。 三木运…

Python的选择结构

Python的选择结构—— if 语句 Python 中的选择结构就是判断真假。 Python 中的 if 语句就是选取要执行的结果&#xff0c;从一些备选的操作中进行要选择的语句。 if 语句后面跟着一个或多个可选的 elif &#xff08;“ else if ”&#xff09;&#xff0c;以及一个最终可选的…