图像分割UNet系列------Res-UNet详解

article/2025/8/24 3:23:24

图像分割unet系列------Res-UNet详解

    • 1、Res-UNet要解决的问题
    • 2、Res-UNet主要网络结构
    • 3、引发的思考

    Res-UNet发表于2018年,是UNet非常重要的改进版本之一。当然,Res-UNet同样是应用在医学图像分割领域-----视网膜血管分割。

1、Res-UNet要解决的问题

    作者在文章的简介中就提到了视网膜血管分割任务的主要难点和挑战,这也是Res-UNet重点解决的问题,具体如下所示(直接翻译):

  • 小血管缺失:位于血管末端的小血管有时甚至人眼也难以分辨;
  • 视盘区分割结果不理想:通常视盘区域较亮,对比度相对较低,这增加了视网膜血管分割的难度;
  • 血管拓扑结构难以维系:视网膜血管有类似树状的分叉结构,但当血管太薄而无法检测到时,这样的连续的血管结构就很难保持连接(发生断裂);
  • 光照因素:光照不足或过度曝光,包括相机光源引起的光反射,会降低图像对比度,从而导致视网膜血管边界不清晰。

    综上所述,由于视网膜血管本身成像的限制与成像过程中光源等干扰,都会使视网膜血管的对比度降低,进而造成血管信息丢失或是直接影响血管的拓扑结构。

2、Res-UNet主要网络结构

    从本质上说Res-UNet并不是一个特别难懂的甚至不是特别难以想到的网络结构。在18年之前已经提出了其中经典的Resnet和Attention思想,作者是将这三者做了有机结合。此方法的流程主要所示:
在这里插入图片描述
    以上这张图并不能很好地展现Res-UNet的网络结构,详细的网络结构如下图所示:
在这里插入图片描述
    注意一点:为了解决眼底图像对比度低的现状,作者在进行模型训练以前对图像进行了对比度有限自适应直方图均衡化(CLAHE)操作,为了增加样本数量进行了patch操作。这两个部分的操作其实是值得我们深入思考的。将在下文中提出自己的观点。

2.1 Attention部分

    Attention部分其实操作也相对简单,主要是通过提取具有圆形感兴趣区域(ROI)和深色背景。然后使用圆形模板ROI mask M作为加权注意,如图2所示黄色箭头。利用这种加权注意机制,使模型只关注目标ROI区域,而忽略了不相关的噪声背景。这个操作实质上就是注意机制是通过将模型的最后一层的特征图与注意掩模相乘来实现的。ROI mask实际上是将图像进行二值化的过程。

2.2 skip连接部分

    根据Resnet的思想将skip连接添加到网络中(见图2的灰色实线部分),此操作增加了网络的深度,根据Resnet中的解释,还可以防止过拟合,提高模型的准确度。

3、引发的思考

3.1 网络结构的思考

    Attention部分祛除了ROI区域以外的噪声影响,但是使用CLAHE增强后并没有去除ROI内部的噪声干扰。但是从文章结果来分析,似乎并没有造成较大的影响。
    skip连接部分充分说明了Resnet的强大,当然网上有太多的解释和分析, 本人不在此处细讲。

3.2 CLAHE增强与patch操作

    CLAHE增强操作必然会增加图像的噪声,当然作者应该进行了滤波操作以保障二值化(ROI)的准确性,也保证网络输入部分图像信号的质量。但是有一个问题值得我们思考,增加噪声就一定会使网络性能变差吗?就算是进行滤波或是其他降噪操作,CLAHE增强带来的噪声是不会完全消失的。噪声是不是还会使网络性能产生较好的性能?我在这一刻想到了反向传播,想到了梯度和激活函数,这是个有趣的点。

    原文中的patch操作是无重叠的,最后再拼在一起。实际上无重叠会造成信息的丢失,尤其是上下文信息的丢失,这在一定程度上会影响血管拓扑结构,这也是一个需要关注的地方。

    总之,以上都是自己的愚见,希望各位大神和朋友们激烈交流和讨论。


http://chatgpt.dhexx.cn/article/XETdo5uk.shtml

相关文章

U-Net

(1)使用全卷积神经网络。(全卷积神经网络就是卷积取代了全连接层,全连接层必须固定图像大小而卷积不用,所以这个策略使得,你可以输入任意尺寸的图片,而且输出也是图片,所以这是一个端到端的网络。 整个网络有23层卷积层…

Pytorch实战系列(一)——CNN之UNet代码解析

目录 1.UNet整体结构理解 1.1 UNet结构拆解 1.1.1 卷积层主体:两次卷积操作 1.1.2 左部分每一层:下采样卷积层 1.1.3 右部分每一层:上采样中部分跳跃连接卷积层 1.1.4 输入层和输出层 1.2 UNet结构融合 2.UNet Pytorch代码理解 2.1 …

快速理解Unet的网络结构

Unet 前言FCNUnet 前言 U-Net和FCN非常的相似,U-Net比FCN稍晚提出来,但都发表在2015年,和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单,只用了一个…

Unet网络解析

1 Unet网络概述 论文名称:U-Net: Convolutional Networks for Biomedical Image Segmentation 发表会议及时间 :MICCA ( 国际医学图像计算和 计算机辅 助干预会 议 ) 2 0 1 5 Unet提出的初衷是为了解决医学图像分割的问题。 Unet网络非常的简单&…

分割网络模型(FCN、Unet、Unet++、SegNet、RefineNet)

1、FCN https://blog.csdn.net/bestrivern/article/details/89523329《Fully Convolutional Networks for Semantic Segmentation》https://arxiv.org/abs/1411.4038 FCN是不含全连接层的全卷积网络,对图像进行像素级的分类,解决了图像的语义分割问题&a…

UNet网络解读

UNet解读 UNet论文UNet的简介代码解读DoubleConv模块Down模块Up模块OutConv模块 整个UNet参考资料 UNet论文 UNet论文地址 UNet的简介 UNet是一个对称的网络结构,左侧为下采样,右侧为上采样;下采样为encoder,上采样为decoder;四…

UNet网络

UNet 本博客主要对UNet网络进行讲解,以下为文章目录: UNet 原论文讲解网络结构数据集介绍评价指标损失计算代码 本文参考资料如下: UNet原论文 https://arxiv.org/pdf/1505.04597.pdfU-Net网络结构讲解(语义分割) https://www.bilibili.c…

U-Net网络详解

U-Net: Convolutional Networks for Biomedical Image Segmentation 原文地址:https://zhuanlan.zhihu.com/p/43927696 前言 U-Net是比较早的使用全卷积网络进行语义分割的算法之一,论文中使用包含压缩路径和扩展路径的对称U形结构在当时非常具有创新…

U-Net网络

U-Net普遍应用在生物医学影像领域,其在架构设计和其他利用卷积神经网络基于像素的图像分割方面更成功,它甚至对有限数据集的图像更有效。U-Net的命名源自它的结构,它的网络结构可视化的结果很像一个字母U。 U-NET网络性能机制 U-Net 融合了 …

【Unet系列】Unet Unet++

文章目录 U-net概述细节部分1、结构的解析2、一些小点 result Unet概述细节部分resultsummary U-net U-Net是一篇基本结构非常好的论文,主要是针对生物医学图片的分割,而且,在今后的许多对医学图像的分割网络中,很大一部分会采取…

图像分割UNet系列------UNet详解

图像分割unet系列------UNet详解 1、UNet网络结构2、UNet网络结构高性能的原因分析3、医学图像使用UNet网络结构 UNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然&…

UNet、UNet++、UNet3+系列

一、unet 简介 继承FCN的思想,继续进行改进。但是相对于FCN,有几个改变的地方,U-Net是完全对称的,且对解码器(应该自Hinton提出编码器、解码器的概念来,即将图像->高语义feature map的过程看成编码器&…

unet网络详解

Unet 参考文献:U-Net: Convolutional Networks for Biomedical Image Segmentation作者:Olaf Ronneberger, Philipp Fischer, and Thomas Brox 什么是Unet模型 Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。与CNN…

Unet相关介绍

老师的bloghttps://zhuanlan.zhihu.com/p/370931792。写的比我这个好,233 Unet是在Fcn基础上提出的一种应用于医学影响的分割网络。医学影像的特点是1、数据集小。2、单张图片大。 由于以上医疗影像的特点,我们无法直接用Fcn进行分割学习。一个德国团队…

UNET详解和UNET++介绍(零基础)

一背景介绍 背景介绍: 自2015年以来,在生物医学图像分割领域,U-Net得到了广泛的应用,目前已达到四千多次引用。至今,U-Net已经有了很多变体。目前已有许多新的卷积神经网络设计方式,但很多仍延续了U-Net的核…

UNet - unet网络

目录 1. u-net介绍 2. u-net网络结构 3. u-net 网络搭建 3.1 DoubleConv 3.2 Down 下采样 3.3 Up 上采样 3.4 网络输出 3.5 UNet 网络 UNet 网络 forward 前向传播 3.6 网络的参数 4. 完整代码 1. u-net介绍 Unet网络是医学图像分割领域常用的分割网络&#xff0…

UNet 浅析

文章目录 1. UNet 简介2. UNet 详解3. 代码实例 - 医学图像分割 (ISBI数据集)【参考】 1. UNet 简介 UNet 属于 FCN 的一种变体,它可以说是最常用、最简单的一种分割模型,它简单、高效、易懂、容易构建,且可以从小数据集中训练。2015 年&…

unet 网络结构

unet 是15年提出的用于解决医学图像分割问题。unet有两部分组成。左边部分可以看出是特征提取网络,用于提取图像的抽象特征。右边可以看作是特征融合操作。与传统的FCN相比,unet使用是使用特征拼接实现特征的融合。unet 通过特征融合操作,实现了浅层的低分辨率(越底层的信息…

unet模型及代码解析

什么是unet 一个U型网络结构,2015年在图像分割领域大放异彩,unet被大量应用在分割领域。它是在FCN的基础上构建,它的U型结构解决了FCN无法上下文的信息和位置信息的弊端 Unet网络结构 主干结构解析 左边为特征提取网络(编码器&…

深度学习论文精读[6]:UNet++

UNet的编解码结构一经提出以来,大有统一深度学习图像分割之势,后续基于UNet的改进方案也经久不衰,一些研究者也在从网络结构本身来思考UNet的有效性。比如说编解码网络应该取几层,跳跃连接是否能够有更多的变化以及什么样的结构训…