UNet - unet网络

article/2025/8/24 7:56:36

目录

1. u-net介绍

2. u-net网络结构

3. u-net 网络搭建

3.1 DoubleConv

3.2 Down 下采样

3.3 Up 上采样

3.4 网络输出

3.5 UNet 网络

UNet 网络

forward  前向传播

3.6 网络的参数

4. 完整代码


1. u-net介绍

Unet网络是医学图像分割领域常用的分割网络,因为网络的结构很像个U,所以称为Unet

Unet 网络是针对像素点的分类,之前介绍的LeNet、ResNet等等都是图像分类,最后分的是整幅图像的类别,而Unet是对像素点输出的是前景还是背景的分类

注:因为Unet 具体的网络框架均有所不同,例如有的连续卷积后会改变图像的size,有的上采样用的是线性插值的方法。这只介绍same卷积和上采样用的转置卷积

Unet网络是个U型结构,左边是Encoder,右边为Decoder

左边是下采样的过程,通过减少图像size,增加图像channel来提取特征。

右边是还原图像的过程,上采样将逐步还原图像的size,这里上采样的输入特征图不仅仅是上一步的输出,还包含了左边对应特征信息。

2. u-net网络结构

本章采用的unet网络如图,为了后面数据的训练和预测。这里实现的方式和下图有些细小的区别,具体的会在下面讲解

首先,网络输入图像的size设定为(480,480)的灰度图像(注意:这里输入是单通道的灰度图)

然后经过成对的3*3卷积,将图像的深度加深,变成维度为(64,480,480),这里因为图像的size没有变,又因为kernel_size = 3,stride = 1,因此需要保证padding = 1

接下来是下采样层,先经过一个最大池化层,stride = 2,kernel_size = 2 将图像的size变为原来的一半。然后接两个3*3 的卷积,输出的特征图维度是(128,240,240)

下采样层总共有四次,根据每次下采样都会将图像的size减半,图像的channel翻倍来计算的话。最后一次图像的size = 480 / (2^4) = 30 ,channel = 64 * (2^4) = 1024 ,所以最后一次下采样图像的维度为(1024,30,30)------> 这里和图上不一样,因为后面用的是转置卷积

左边的下采样部分实现后,就是右边的上采样部分

上采样会使图像的channel减半,size变为两倍,正好和下采样的部分反过来。这里利用的操作是转置卷积,转置卷积具体的实现这里不做介绍,主要看它的维度变换。转置卷积变换的公式为:

out = (in - 1) * stride - 2 * padding + ksize

这里为了保证图像的size变为两倍,所以要保证 out = 2 * in ,而in的系数2只能从stride来,所以公式变为out = 2 * in - 2 - 2 * padding + ksize ,这里我们让ksize = 2,因此padding = 0 就可以满足要求。而channel的减半只需要把卷积核的个数减半即可

之前介绍过,最后一层的维度是(1024,30,30),这样通过转置卷积的操作图像的维度就变成了(512,60,60),刚好等于左边下采样的维度!! 所以将它们加在一块,然后进行成对的3*3卷积

之后就是和下采样的次数一样,重复四次上采样,直到将图像还原成(64,480,480)

最后一步,如果是图像分类的话,这里应该是全连接层找最大的预测值了。但是Unet是像素点的分类,所以最后产生的也是一副图像,因为这时候图像的size已经是480不需要变了,只需要将图像的channel改变,所以这里只需要一个kernel_size = 1的卷积核就可以了。

注:最后输出图像的维度是(480,480)的灰度图像,准确的说是二值图像

3. u-net 网络搭建

3.1 DoubleConv

观察unet 网络可以发现,3*3的卷积核都是成对出现的,所以这里将成对卷积核的操作封装成一个类

1. 因为采用的是两个连续的3*3  卷积,不改变图像的size,所以这里卷积的参数要设置padding=1

2. ResNet 介绍过,BN代替Dropout 的时候,不需要Bias 

3. 最后经过ReLU 激活函数

3.2 Down 下采样

然后定义下采样的操作

 

1. 这里下采样采用的就是最大池化层,kernel_size = 2,padding =2 会让图像的size减半

2. 然后经过两个连续3*3 的卷积

3. 将 下采样+两个3*3 的卷积 封装成一个新的类Down

3.3 Up 上采样

然后是定义上采样

 

1. 上采样用的是转置卷积,会将图像的size扩大两倍

2.  注意这里不是定义成 Sequential ,因为 Sequential 会从上到下顺序传播。这里还需要一步尺度融合,就是拼接的操作

3. 前向传播的时候,图像首先上采样,会将channel减小一半,size扩大两倍。这样就和左边对应的下采样的位置维度一致,将它们通过torch.cat 拼接,dim = 1是因为batch的维度是0 。然后经过两个3*3 的卷积就行了

3.4 网络输出

最后网络的输出很简单,经过一个1*1 的卷积核,不改变size的情况下。通过卷积核的个数调整图像的channel就行了

3.5 UNet 网络

UNet 网络

网络的框架很简单,因为每个小的模块已经搭好了,将它们拼接起来就行了

因为搭建小的模块的时候,我们对于模块的输入都是in和out channel,所以在定义网络的时候,每个模块只要传入对应的channel就行了。

这里按照UNet 网络的框架设置

 

forward  前向传播

前向传播的过程如下:

在下采样的时候,每个输出都要用变量保存,为了和后面上采样拼接使用

 

3.6 网络的参数

# 计算 UNet 的网络参数个数
model = UNet(in_channels=1,num_classes=1)
print("Total number of paramerters in networks is {}  ".format(sum(x.numel() for x in model.parameters()))) 

UNet 网络参数个数为:

 

4. 完整代码

代码:

import torch.nn as nn
import torch# 搭建unet 网络
class DoubleConv(nn.Module):    # 连续两次卷积def __init__(self,in_channels,out_channels):super(DoubleConv,self).__init__()self.double_conv = nn.Sequential(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1,bias=False),     # 3*3 卷积核nn.BatchNorm2d(out_channels),                                               # 用 BN 代替 Dropoutnn.ReLU(inplace=True),                                                      # ReLU 激活函数nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1,bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))def forward(self,x):    # 前向传播x = self.double_conv(x)return xclass Down(nn.Module):   # 下采样def __init__(self,in_channels,out_channels):super(Down, self).__init__()self.downsampling = nn.Sequential(nn.MaxPool2d(kernel_size=2,stride=2),DoubleConv(in_channels,out_channels))def forward(self,x):x = self.downsampling(x)return xclass Up(nn.Module):    # 上采样def __init__(self, in_channels, out_channels):super(Up,self).__init__()self.upsampling = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) # 转置卷积self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1, x2):x1 = self.upsampling(x1)x = torch.cat([x2, x1], dim=1)  # 从channel 通道拼接x = self.conv(x)return xclass OutConv(nn.Module):   # 最后一个网络的输出def __init__(self, in_channels, num_classes):super(OutConv, self).__init__()self.conv = nn.Conv2d(in_channels, num_classes, kernel_size=1)def forward(self, x):return self.conv(x)class UNet(nn.Module):   # unet 网络def __init__(self, in_channels = 1, num_classes = 1):super(UNet, self).__init__()self.in_channels = in_channels                  # 输入图像的channelself.num_classes = num_classes                  # 网络最后的输出self.in_conv = DoubleConv(in_channels, 64)      # 第一层self.down1 = Down(64, 128)                      # 下采样过程self.down2 = Down(128, 256)self.down3 = Down(256, 512)self.down4 = Down(512, 1024)self.up1 = Up(1024, 512)                        # 上采样过程self.up2 = Up(512, 256)self.up3 = Up(256, 128)self.up4 = Up(128, 64)self.out_conv = OutConv(64, num_classes)        # 网络输出def forward(self, x):           # 前向传播    输入size为 (10,1,480,480),这里设置batch = 10x1 = self.in_conv(x)        # torch.Size([10, 64, 480, 480])x2 = self.down1(x1)         # torch.Size([10, 128, 240, 240])x3 = self.down2(x2)         # torch.Size([10, 256, 120, 120])x4 = self.down3(x3)         # torch.Size([10, 512, 60, 60])x5 = self.down4(x4)         # torch.Size([10, 1024, 30, 30])x = self.up1(x5, x4)        # torch.Size([10, 512, 60, 60])x = self.up2(x, x3)         # torch.Size([10, 256, 120, 120])x = self.up3(x, x2)         # torch.Size([10, 128, 240, 240])x = self.up4(x, x1)         # torch.Size([10, 64, 480, 480])x = self.out_conv(x)        # torch.Size([10, 1, 480, 480])return x# 计算 UNet 的网络参数个数
model = UNet(in_channels=1,num_classes=1)
print("Total number of paramerters in networks is {}  ".format(sum(x.numel() for x in model.parameters())))


http://chatgpt.dhexx.cn/article/fdjtROXn.shtml

相关文章

UNet 浅析

文章目录 1. UNet 简介2. UNet 详解3. 代码实例 - 医学图像分割 (ISBI数据集)【参考】 1. UNet 简介 UNet 属于 FCN 的一种变体,它可以说是最常用、最简单的一种分割模型,它简单、高效、易懂、容易构建,且可以从小数据集中训练。2015 年&…

unet 网络结构

unet 是15年提出的用于解决医学图像分割问题。unet有两部分组成。左边部分可以看出是特征提取网络,用于提取图像的抽象特征。右边可以看作是特征融合操作。与传统的FCN相比,unet使用是使用特征拼接实现特征的融合。unet 通过特征融合操作,实现了浅层的低分辨率(越底层的信息…

unet模型及代码解析

什么是unet 一个U型网络结构,2015年在图像分割领域大放异彩,unet被大量应用在分割领域。它是在FCN的基础上构建,它的U型结构解决了FCN无法上下文的信息和位置信息的弊端 Unet网络结构 主干结构解析 左边为特征提取网络(编码器&…

深度学习论文精读[6]:UNet++

UNet的编解码结构一经提出以来,大有统一深度学习图像分割之势,后续基于UNet的改进方案也经久不衰,一些研究者也在从网络结构本身来思考UNet的有效性。比如说编解码网络应该取几层,跳跃连接是否能够有更多的变化以及什么样的结构训…

【Unet系列】(三)Unet++网络

一、UNet整体网络结构 Unet主要是探索encoder和decoder需要多大的问题,以此为基础,提出了融合不同尺寸Unet结构的网络。创新点就是把不同尺寸的Uent结构融入到了一个网络里。 二、结构的好处 (1)不管哪个深度的特征有效&#…

深度学习零基础学习之路——第四章 UNet-Family中Unet、Unet++和Unet3+的简介

Python深度学习入门 第一章 Python深度学习入门之环境软件配置 第二章 Python深度学习入门之数据处理Dataset的使用 第三章 数据可视化TensorBoard和TochVision的使用 第四章 UNet-Family中Unet、Unet和Unet3的简介 第五章 个人数据集的制作 Unet-Family的学习 Python深度学习…

憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台

憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台 注意事项学习前言什么是Unet模型代码下载Unet实现思路一、预测部分1、主干网络介绍2、加强特征提取结构3、利用特征获得预测结果 二、训练部分1、训练文件详解2、LOSS解析 训练自己的Unet模型一、数据集的准备二、…

UNet详解(附图文和代码实现)

卷积神经网络被大规模的应用在分类任务中,输出的结果是整个图像的类标签。但是UNet是像素级分类,输出的则是每个像素点的类别,且不同类别的像素会显示不同颜色,UNet常常用在生物医学图像上,而该任务中图片数据往往较少…

条纹进度条

最开始学习qml的时候,想实现一个条纹进度条,当时还不熟悉动画,做不出来,只做了个静止的。qml学习和使用了快1年之际,把这个遗憾弥补下。 先上效果图,颜色取自Bootflat。 以下是源码,先上Stripe…

数据批量插入与逐条插入分析

简述 今天抽空做了一下使用Jdbc对数据操作的实际性能。在平时开发过程中我们经常会使用Hibernate来操作数据库,所以我们很少会去使用批量插入数据。一般都是通过hibernate的insert、addSave等方法来一条条地插入数据。所以很少去考虑这个问题。下面是针对Jdbc进行的…

css滚动条

此部分针对webkit内核的浏览器,使用伪类来改变滚动条的默认样式,详情如下: 滚动条组成部分 1. ::-webkit-scrollbar 滚动条整体部分2. ::-webkit-scrollbar-thumb 滚动条里面的小方块,能向上向下移动(或向左向右移动…

计算机组成原理(五)-一条指令是怎么被执行的

什么是指令: 程序代码的本质就是一条一条的指令,我们需要通过编码的方式让CPU知道我们需要它干什么,最后由译码器翻译成一条条的机器指令。机器指令主要有两部分组成:操作码、地址码。地址码直接给出操作数和操作数的地址&#x…

CSS 斜条纹进度条动画

这是第一版进度条 ,用css写的.但是后续因为数据不同,要显示不同的颜色和数据,所以又改了一版,直接用的el-progress.自定义的样式.对于新手小白来说比较友好.先上这一版代码. <div class"state"><span>开机时间</span><!-- 进度条 --><div…

Acrobat DC 更改背景颜色会有一条条白色横纹

解决方法如下&#xff1a; 编辑->首选项->页面显示->取消 使用2D图形加速

turtle模块还能这样玩?(一条条金龙鱼、雨景)

文章目录 一条条金龙鱼雨景 Python的turtle模块不仅可以用来绘制一些基本的图形&#xff0c;还有与图片结合&#xff0c;做出一些特殊的效果&#xff0c;还可以用来做二维小游戏。本篇是介绍用turtle模块做出的一幅动态的鱼儿游过的画面和动态的雨景图 一条条金龙鱼 1、先看一…

2.Python # 代码注释

2. # 代码注释 文章目录 2. # 代码注释1. 什么是代码注释2. 注释语法3. 注释位置1. 注释在代码的上一行2. 注释在代码的末端 4. 课堂练习 1. 什么是代码注释 代码注释即对代码进行批注说明。 相当于给一个英文单词批注中文释义。 【温馨提示】注释是给程序员自己看的&#xf…

python:导入第三方库greenlet,gevent方法

greenlet&#xff0c;gevent greenlet&#xff0c;gevent是python支持的第三方库&#xff0c;它们可以帮助我们完成协程的使用&#xff0c;其中greenlet是手动调换方式&#xff08;switch方法&#xff09;&#xff0c;gevent是自动调换方式&#xff08;遇到IO操作&#xff09;…

python gevent使用

对大部分语言来说&#xff0c;经常用到并发来处理一些情况。比如必须要多次查询数据库&#xff0c;多次请求API&#xff0c;python内置的gevent就很简单好用。传参&#xff0c;获取返回值&#xff0c;捕获协程的错误都很方便。 直接上例子&#xff1a; import gevent as gevent…

指定Geany使用的Python版本

本文介绍&#xff1a; 在win7下配置Geany,使其使用 Python 3 因为电脑上安装了不同版本的Python&#xff0c;需要根据实际情况来进行版本切换。 第一步&#xff1a;首先点击"生成"按钮的三角箭头&#xff0c;再点击"设置生成命令" 第二步&#xff1a;在弹出…

ModuleNotFountError:No module named ‘gensim‘(在python代码中导入gensim模块)

运行窗口&#xff1a; conda install 模块 pip install 模块 第一个命令应该由于网速太慢没有下载完全&#xff0c;第二个命令我手动输入n退出了。 网速慢&#xff0c;可以使用如下命令&#xff1a; pip install -i https://pypi.douban.com/simple gensim pip install -i…