快速理解Unet的网络结构

article/2025/8/24 3:29:05

Unet

  • 前言
  • FCN
  • Unet

前言

U-Net和FCN非常的相似,U-Net比FCN稍晚提出来,但都发表在2015年,和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单,只用了一个deconvolution的操作,之后并没有跟上卷积结构。第二个区别就是skip connection,FCN用的是加操作(summation),U-Net用的是叠操作(concatenation)。这些都是细节,重点是它们的结构用了一个比较经典的思路,也就是编码和解码(encoder-decoder),早在2006年就被Hinton大神提出来发表在了nature上。

FCN

这里我门先来看一下FCN和CNN的区别。关于这两点的区别,这篇文章总结的非常好。
我们知道, 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(“全连接层 + softmax归一化”的结构)。

下图中的猫, 输入AlexNet网络中, 经过后面的全连接层后得到一个长为1000的输出向量, 再加上softmax归一化后即可以表示输入图像属于每一类的概率, 其中在“tabby cat”这一类统计概率最高。
AlexNet
这个概率信息是1维的,即只能标识整个图片的类别,不能标识每个像素点的类别,所以这种全连接方法不适用于图像分割。

CNN一般用作图像级的分类,而FCN可以对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类(最后逐个像素计算softmax分类的损失, 相当于每一个像素对应一个训练样本).如下图所示

在这里插入图片描述
简单的来说,FCN与CNN的区域在把于CNN最后的全连接层换成卷积层,输入一张原始图,输出的是一张已经Label好的图片,做到了端到端.

这里再说一下实现吧:
FCN采用了两种上采样的方法, 一种是采用反卷积的方法,另外一种是采用Resize,如双线性插值直接缩放,类似于图像缩放。

Unet

我们先来看一下UNET的网络结构
直入主题,U-Net的U形结构如图1所示。网络是一个经典的全卷积网络(即网络中没有全连接操作)。网络的输入是一张 572 × 572 572\times572 572×572 的边缘经过镜像操作的图片(input image tile),关于“镜像操作“会在1.2节进行详细分析,网络的左侧(红色虚线)是由卷积和Max Pooling构成的一系列降采样操作,论文中将这一部分叫做压缩路径(contracting path)。压缩路径由4个block组成,每个block使用了3个有效卷积和1个Max Pooling降采样,每次降采样之后Feature Map的个数乘2,因此有了图中所示的Feature Map尺寸变化。最终得到了尺寸为 32 × 32 32\times32 32×32的Feature Map。

网络的右侧部分(绿色虚线)在论文中叫做扩展路径(expansive path)。同样由4个block组成,每个block开始之前通过反卷积将Feature Map的尺寸乘2,同时将其个数减半(最后一层略有不同),然后和左侧对称的压缩路径的Feature Map合并,由于左侧压缩路径和右侧扩展路径的Feature Map的尺寸不一样,U-Net是通过将压缩路径的Feature Map裁剪到和扩展路径相同尺寸的Feature Map进行归一化的(即图1中左侧虚线部分)。扩展路径的卷积操作依旧使用的是有效卷积操作,最终得到的Feature Map的尺寸是 338 × 338 338\times338 338×338。由于该任务是一个二分类任务,所以网络有两个输出Feature Map。
UNET网络结构


http://chatgpt.dhexx.cn/article/5Leo5rJ3.shtml

相关文章

Unet网络解析

1 Unet网络概述 论文名称:U-Net: Convolutional Networks for Biomedical Image Segmentation 发表会议及时间 :MICCA ( 国际医学图像计算和 计算机辅 助干预会 议 ) 2 0 1 5 Unet提出的初衷是为了解决医学图像分割的问题。 Unet网络非常的简单&…

分割网络模型(FCN、Unet、Unet++、SegNet、RefineNet)

1、FCN https://blog.csdn.net/bestrivern/article/details/89523329《Fully Convolutional Networks for Semantic Segmentation》https://arxiv.org/abs/1411.4038 FCN是不含全连接层的全卷积网络,对图像进行像素级的分类,解决了图像的语义分割问题&a…

UNet网络解读

UNet解读 UNet论文UNet的简介代码解读DoubleConv模块Down模块Up模块OutConv模块 整个UNet参考资料 UNet论文 UNet论文地址 UNet的简介 UNet是一个对称的网络结构,左侧为下采样,右侧为上采样;下采样为encoder,上采样为decoder;四…

UNet网络

UNet 本博客主要对UNet网络进行讲解,以下为文章目录: UNet 原论文讲解网络结构数据集介绍评价指标损失计算代码 本文参考资料如下: UNet原论文 https://arxiv.org/pdf/1505.04597.pdfU-Net网络结构讲解(语义分割) https://www.bilibili.c…

U-Net网络详解

U-Net: Convolutional Networks for Biomedical Image Segmentation 原文地址:https://zhuanlan.zhihu.com/p/43927696 前言 U-Net是比较早的使用全卷积网络进行语义分割的算法之一,论文中使用包含压缩路径和扩展路径的对称U形结构在当时非常具有创新…

U-Net网络

U-Net普遍应用在生物医学影像领域,其在架构设计和其他利用卷积神经网络基于像素的图像分割方面更成功,它甚至对有限数据集的图像更有效。U-Net的命名源自它的结构,它的网络结构可视化的结果很像一个字母U。 U-NET网络性能机制 U-Net 融合了 …

【Unet系列】Unet Unet++

文章目录 U-net概述细节部分1、结构的解析2、一些小点 result Unet概述细节部分resultsummary U-net U-Net是一篇基本结构非常好的论文,主要是针对生物医学图片的分割,而且,在今后的许多对医学图像的分割网络中,很大一部分会采取…

图像分割UNet系列------UNet详解

图像分割unet系列------UNet详解 1、UNet网络结构2、UNet网络结构高性能的原因分析3、医学图像使用UNet网络结构 UNet最早发表在2015的MICCAI上,到2020年中旬的引用量已经超过了9700多次,估计现在都过万了,从这方面看足以见得其影响力。当然&…

UNet、UNet++、UNet3+系列

一、unet 简介 继承FCN的思想,继续进行改进。但是相对于FCN,有几个改变的地方,U-Net是完全对称的,且对解码器(应该自Hinton提出编码器、解码器的概念来,即将图像->高语义feature map的过程看成编码器&…

unet网络详解

Unet 参考文献:U-Net: Convolutional Networks for Biomedical Image Segmentation作者:Olaf Ronneberger, Philipp Fischer, and Thomas Brox 什么是Unet模型 Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。与CNN…

Unet相关介绍

老师的bloghttps://zhuanlan.zhihu.com/p/370931792。写的比我这个好,233 Unet是在Fcn基础上提出的一种应用于医学影响的分割网络。医学影像的特点是1、数据集小。2、单张图片大。 由于以上医疗影像的特点,我们无法直接用Fcn进行分割学习。一个德国团队…

UNET详解和UNET++介绍(零基础)

一背景介绍 背景介绍: 自2015年以来,在生物医学图像分割领域,U-Net得到了广泛的应用,目前已达到四千多次引用。至今,U-Net已经有了很多变体。目前已有许多新的卷积神经网络设计方式,但很多仍延续了U-Net的核…

UNet - unet网络

目录 1. u-net介绍 2. u-net网络结构 3. u-net 网络搭建 3.1 DoubleConv 3.2 Down 下采样 3.3 Up 上采样 3.4 网络输出 3.5 UNet 网络 UNet 网络 forward 前向传播 3.6 网络的参数 4. 完整代码 1. u-net介绍 Unet网络是医学图像分割领域常用的分割网络&#xff0…

UNet 浅析

文章目录 1. UNet 简介2. UNet 详解3. 代码实例 - 医学图像分割 (ISBI数据集)【参考】 1. UNet 简介 UNet 属于 FCN 的一种变体,它可以说是最常用、最简单的一种分割模型,它简单、高效、易懂、容易构建,且可以从小数据集中训练。2015 年&…

unet 网络结构

unet 是15年提出的用于解决医学图像分割问题。unet有两部分组成。左边部分可以看出是特征提取网络,用于提取图像的抽象特征。右边可以看作是特征融合操作。与传统的FCN相比,unet使用是使用特征拼接实现特征的融合。unet 通过特征融合操作,实现了浅层的低分辨率(越底层的信息…

unet模型及代码解析

什么是unet 一个U型网络结构,2015年在图像分割领域大放异彩,unet被大量应用在分割领域。它是在FCN的基础上构建,它的U型结构解决了FCN无法上下文的信息和位置信息的弊端 Unet网络结构 主干结构解析 左边为特征提取网络(编码器&…

深度学习论文精读[6]:UNet++

UNet的编解码结构一经提出以来,大有统一深度学习图像分割之势,后续基于UNet的改进方案也经久不衰,一些研究者也在从网络结构本身来思考UNet的有效性。比如说编解码网络应该取几层,跳跃连接是否能够有更多的变化以及什么样的结构训…

【Unet系列】(三)Unet++网络

一、UNet整体网络结构 Unet主要是探索encoder和decoder需要多大的问题,以此为基础,提出了融合不同尺寸Unet结构的网络。创新点就是把不同尺寸的Uent结构融入到了一个网络里。 二、结构的好处 (1)不管哪个深度的特征有效&#…

深度学习零基础学习之路——第四章 UNet-Family中Unet、Unet++和Unet3+的简介

Python深度学习入门 第一章 Python深度学习入门之环境软件配置 第二章 Python深度学习入门之数据处理Dataset的使用 第三章 数据可视化TensorBoard和TochVision的使用 第四章 UNet-Family中Unet、Unet和Unet3的简介 第五章 个人数据集的制作 Unet-Family的学习 Python深度学习…

憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台

憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台 注意事项学习前言什么是Unet模型代码下载Unet实现思路一、预测部分1、主干网络介绍2、加强特征提取结构3、利用特征获得预测结果 二、训练部分1、训练文件详解2、LOSS解析 训练自己的Unet模型一、数据集的准备二、…