什么是灰度发布

article/2025/11/5 8:15:36
灰度发布是指在黑与白之间,能够平滑过渡的一种发布方式。AB  test就是一种灰度发布方式,让一部用户继续用A,一部分用户开始用B,如果用户对B没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到B上面 来。灰度发布可以保证整体系统的稳定,在初始灰度的时候就可以发现、调整问题,以保证其影响度。
  Gmail Labs是一个新特性橱窗,用户可以自己选择一些未正式发布的新特性进行体验,不喜欢可以关闭,在这个过程中,吃了螃蟹,也当了Google的小白鼠。
  这个做法比传统的灰度要高明很多,更加尊重用户:
  1、它没有强X用户,用户是否愿意当小白鼠完全自愿
  2、新特性不是打包在一起的一个大版本,可以选择某几个喜欢的螃蟹尝尝
  3、螃蟹不好吃可以扔掉,不用硬吃进肚子里引发肠胃炎
  当然这些好处也是有代价的:
  1、要开发一个labs平台实现新特性上架、独立尝试的功能,这可能要改动Gmail的前后台架构
  2、新特性要按照一定规范来写,才能发布到这个平台上,可能会增加一些工作量
  3、小白鼠用户增多之后,对系统的压力可能会有一定提升,因为每个用户调用的界面都不一样了
  既然Gmail  Labs能够顺利发布,那么说明对Google来说,以上这些问题都不算问题。另外,现在展示的新特性,都注明了开发者的名字,那么,Gmail  Labs可能会开放这个平台让外部开发者也能提交特性?这倒是很open的一种开发模式,非常适合Google的web app产品线。
  互联网产品有一个特点,就是不停的升级,升级,再升级。我所在的项目组,基本上保持每周一次的发布频率,系统升级总是伴随着风险,新旧版本兼容的风险,用户使用习惯突然改变而造成用户流失的风险,系统down机的风险.....  为了避免这些风险,很多产品都采用了灰度发布的策略,其主要思想就是把影响集中到一个点,然后再发散到一个面,出现意外情况后很容易就回退。
  很长时间,我们都一直在改进搜索引擎的排序算法,尽量让最好的商品出现在搜索结果的第一屏。我 们尝试了很多中算法,不断调整各个排序因子所占的比重。但是我们无法确信我们的排序结果能满足所有用户的需求。所以我们采用了灰度发布,选取几个一级商品 类目,在其中应用不同的排序算法,比如在女装类目中,我们把卖家信用所占的比率调整到60%,在珠宝类目中,我们把销售量所占的比率调整到60%.. 然后发布出去,收集用户反馈,最终选择一种大部分人认为好的算法。
  QZone是另外一个采用灰度发布的例子。大家都知道,QZone在过去的一年中改进是巨大 的,从以前慢悠悠的老爷爷变成了一个充满青春活力的小伙子。其中经历了大小无数次的发布,他们的发布也都是采用了灰度发布的策略,用户数据的升级并不是大 面积的一次性升级,而是通过一个用户升级标志服务器,如果用户数据没有升级,后台会把此用户的数据逐步迁移到新版本上,然后将升级标志位置1,升级过程 中,用户仍然可以访问旧的数据,升级完成后的访问都将转发给新的版本。

  QQ的很多产品发布都采用灰度发布,有些是抽取部分QQ号段升级成新系统,然后根据用户反馈再大范围升级。我们的产品大部分也是采用灰度发布。

灰度发布引擎

   对于一般的小系统并不需要单独的灰度发布引擎,可以参考A/B测试中做法,在页面javascript或服务器端实现分流的规则即可。但对于大型的互联网应用而言,单独的用于管理用户分流的发布引擎就很有必要了。“钱掌柜”分流发布模式 提到了原来阿里软件所使用的灰度发布引擎,设计思路具有普遍性,可以供参考

灰度发布,灰度放量,A/B Testing,A/B 测试,分流发布


本文来自 http://enki-ding-yeah-net.iteye.com/blog/1114565


http://chatgpt.dhexx.cn/article/WhKL9MqI.shtml

相关文章

准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )

自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。 本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情…

多分类评价指标:准确率、精确率、召回率、F1值

准确率、精确率、召回率、F1值 定义: 准确率(Accuracy):正确分类的样本个数占总样本个数, A (TP TN) / N 精确率(Precision)(查准率):预测正确的正例数据占预测为正例数据的比…

准确率(Accuracy) VS 精确率(Precision) VS 召回率(Recall)

准确率(Accuracy) VS 精确率(Precision) VS 召回率(Recall) 在信息检索中, 准确率通常用于评价结果的质量, 而召回率用来评价结果的完整性。 我们的目标是训练一个模型,它可以将这个二维空间中的新数据点分成红色和蓝色两类。 数据有两种状态:测试集数据和预测结…

真正率、假正率、真负率

True Positive (真正, TP)被模型预测为正的正样本; True Negative(真负 , TN)被模型预测为负的负样本 ; False Positive (假正, FP)被模型预测为正的负样本; False Negat…

关于召回率和准确率的理解

最近一直在做相关推荐方面的研究与应用工作,召回率与准确率这两个概念偶尔会遇到, 知道意思,但是有时候要很清晰地向同学介绍则有点转不过弯来。 召回率和准确率是数据挖掘中预测、互联网中的搜索引擎等经常涉及的两个概念和指标。 召回率&am…

分类器性能指标错误率、正确率、召回率

前言 在使用机器学习的方法解决分类问题时,我们通常需要一个指标来衡量模型的性能,以下介绍一些常用的性能指标,在实际应用中可以依照应用需求采用相应的指标。 错误率 错误率是使用最普遍、最简单同时又是最粗糙的分类指标。其计算方法为…

分类模型的评估标准(精确率召回率准确率)

对模型进行评估时,可以选择很多种指标,但不同的指标可能得到不同的结果,如何选择合适的指标,需要取决于任务需求。 针对二元分类结果,常用的评估指标有如下三个:查准率(Precision)、…

准确率、精确率、召回率、F1-measure

文章目录 准确率(Accuracy)精确率(precision)召回率(recall)F1-measure值学习理解网站 -p’(Predicted)n’(Predicted)p(Actual)True PositiveFalse Negtiven(Actual)False PositiveTrue Negtive 准确率(Accuracy) A No.Samples Predicted Correctly Total No.of Samples T …

评价指标(一)精确率,召回率,F1-score

1. 精确率-Precision、召回率Recall 先来讲一下精确率(Precision)和准确率(Recall),首先要明确一点,精确率不等于准确率(Accuracy),两者是不同的,后面也会讲到准确率。在信息检索里,精确率和召…

错误接受率 (FAR), 错误拒绝率(FRR), 等错误率(EER)

不管是声纹识别和图像识别,以及指纹识别,在评价模型时总要用到这三个指标。下边说下这三个指标的含义。 1、错误接受率 (FAR-False Acceptance Rate) FAR nontarget_is_target / ( target_is_target nontarget_is_target ) 另一种比较容易理解的表示方…

Redis进阶:布隆过滤器(Bloom Filter)及误判率数学推导

1 缘起 有一次偶然间听到有同事在说某个项目中使用了布隆过滤器, 哎呦,我去,我竟然不知道啥是布隆过滤器, 这我哪能忍?其实,也可以忍,但是,可能有的面试官不能忍!&#…

机器学习中准确率、精确率、召回率、误报率、漏报率、F1-Score、APmAP、AUC、MAE、MAPE、MSE、RMSE、R-Squared等指标的定义和说明

在机器学习和深度学习用于异常检测(Anomaly detection)、电子商务(E-commerce)、信息检索(Information retrieval, IR)等领域任务(Task)中,有很多的指标来判断机器学习和深度学习效果的好坏。这些指标有相互权衡的,有相互背向的,所以往往需要根据实际的任务和场景来…

讨教大学|六西格玛之属性值数据一致性分析

相信大家在日常的工作中肯定会遇到这样一种情况:产品的质量特性属于外观特性,即 需要靠人工判断产品是不是符合标准。当遇到客户投诉,或者内部报废率比较高的时候,经 常会遇到客户和领导的挑战: 如何保证员工清楚的知…

布隆过滤器原理和基于BloomFilter的误判率展示

布隆过滤器 布隆过滤器原理 布隆过滤器是由n个Hash函数和一个二进制数组组成。 如图所示(参考,hash函数可以多个) 1.保存操作 发来一个请求数据hello对数据hello经过三次hash运算,分别得到三个值(假设1&#xff0…

布隆过滤器的误判率该如何计算?

作者:胡慢慢滚雪球 链接:https://www.zhihu.com/question/38573286/answer/507497251 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 在计算机中,判断一个元素是不是在一个集合中…

神器 mimikatz - 直接抓取 Windows 明文密码

昨天有朋友发了个法国佬写的神器叫 mimikatz让我们看下 神器下载地址: http://blog.gentilkiwi.com/mimikatz 还有一篇用这个神器直接从 lsass.exe 里获取windows处于active状态账号明文密码的文章 http://pentestmonkey.net/blog/mimikatz-tool-to-recover-cleartext-password…

加密连接数据库明文密码

我的其他笔记有记录过加密算法,这里不一一阐述,用DES对MySQL用户名和密码加密,然后在spring-dao.xml中配置中解密,需要新建一个解密类注册到xml中。 解密类: package com.mlr.util;import org.springframework.beans…

Spring boot 配置文件明文密码加解密

jasypt 是一个简单易用的加密Java库,使用起来非常简单。 现在我们系统中的一些配置文件中密码还是暴露的,打开配置文件,就能看到密码,如图: 这情况我们如果不想让别人看到数据库密码,所以就要对数据库密码进行加解密 通过jasypt 就可以简单实现 使用方法: 以spring b…

spring boot配置文件加密、明文密码加密、properties 和 yml 互相转换

spring boot配置文件加密、明文密码加密、properties 和 yml 互相转换 1.引入maven2.添加配置(yml格式的;properties 和 yml 在线转换)3.找到maven仓库下:org\jasypt\jasypt\1.9.3将内容进行加密4.常见问题及排查方法 1.引入maven…

在Win10系统中用mimikatz抓取明文密码

实验环境 :Windows10专业版 参考了网上的方法,发现大部分都是抄的 https://blog.csdn.net/netsec_steven/article/details/107257325 这一篇文章,都被转烂了,这一篇文章是对的,但是路径上还是有点小问题的,…