全局对比度的图像显著性检测算法

article/2025/10/12 7:12:10

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自:opencv学堂

显著性检测概念

显著性就是可以快速引起你注意的对象或者物体,在图像或者视频中显著性检测的结果往往是图像或者视频中对象,在神经学科中显著性检测被描述为注意力机制,目的是聚焦或者缩小看到的对象场景重要部分,显著性检测可以自动处理图像中对象表示。显著性检测可以让对象检测,图像分割等算法更加聪明与高效的工作。

算法思想

作者认为生物皮层对图像对比度比较敏感,通过图像对比度可以实现图像显著性特征提取,提出了两种基于全局对比度的显著性检测方法

  • 基于直方图的对比度方法(histogram-based contrast 简称HC)

  • 基于区域的对比度方法(region-based contrast 简称RC)

HC详解

HC的显著性图生成主要是基于输入图像的颜色值直方图分布,生成像素级别的显著性值,每个像素点的显著性值是它跟剩下全部图像像素点的对比度之间的度量,度量公式为:

 为12,对Lab色彩空间只在L上计算,但是这种做法有很大的弊端,就是颜色的区分度下降,色彩空间多维度信息没有有效利用,所以一般会对Lab色彩空间的三个维度同时量化生成 颜色值,然后再根据频次优化出现的颜色值范围。确保这些颜色值可以覆盖95%以上的像素点。

尽管我们可以通过建立直方图使用色彩空间量化的方法加速全局对比度的计算,但是量化色彩空间本身就是人为的,有可能把相似的颜色量化成不同的值,为了减少这种现象导致显著性噪声出现,所以对得到显著性值最后完成一个模糊操作,这种模糊操作选择线性模型,距离当前显著性值最近的有最大权重值:

RC详解

除了对比度之外,区域与空间关系在显著性检测中也扮演重要作用,高对比邻近周围通常是显著性区域一个很强的证据,HC是计算像素级别的显著性值,计算开销比较大,基于区域对比度分析的显著性检测通过定义每个区域与其他区域的相似度权重得到区域显著性值,完成显著性检测。RC做法需要首先生成区域,作者在论文中通过基于图的图像分割得到很多图像区域,对一个区域计算显著性值:

实验与应用

实验结果

各种不同的图像显著性检测对比

显然HC与RC的效果比较好,在相同数据集上对不同显著性测试得到召回率:

应用:

作者给出了两个应用场景,一个是基于图像显著性检测的阈值化分割,另外一个基于显著性的图像语义分割。

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


http://chatgpt.dhexx.cn/article/RYUA4yMq.shtml

相关文章

显著性检测- HC模型

1. 模型论文: Global Contrast based Salient Region detection. Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, Shi-Min Hu. IEEE TPAMI, 2015 2. 实现代码 (1) 显著性检测公共头文件 #ifndef SALIENTCOMMON_H #define SALIENTCOMMON_…

基于深度学习的显著性检测用于遥感影像地物提取(U-2-NET)

GitHub地址链接:https://github.com/NathanUA/U-2-Net 这个显著性检测很好用,强烈推荐,建议二分类的任务都来试试,尤其对边缘细节要求比较高的任务。 下面的效果要不是第一张图预测有瑕疵,我都以为预测代码是把标签复制…

图像显著性目标检测

一、概述 1、定义 图像显著性检测(Saliency Detection,SD), 指通过智能算法模拟人的视觉系统特点,预测人类的视觉凝视点和眼动,提取图像中的显著区域(即人类感兴趣的区域),可以广泛用于目标识别、图像编辑以及图像检索等领域&am…

显著性检测——LC模型

1. 参考文献&#xff1a; Visual Attention Detection in Video Sequences Using Spatiotemporal Cues。 Yun Zhai and Mubarak Shah. Page 4-5 2. 模型实现 2.1 显著性检测公共头文件 #ifndef SALIENTCOMMON_H #define SALIENTCOMMON_H // std lib #include <iostream…

GrabCut算法、物体显著性检测

图割GraphCus算法。利用颜色、纹理等信息对GraphCut进行改进&#xff0c;形成效果更好的GrabCut算法。 对图像的目标物体和背景建立一个K维的全协方差高斯混合模型。 其中&#xff0c;单高斯模型的概率密度函数用公式表示为&#xff1a; 高斯混合模型可表示为n个单高斯模型的概…

显著性检测的评价指标代码

包括MAE、Pre、Rec、F-measure、Auc、CC、Nss MAE&#xff1a; 平均绝对误差MAE&#xff08;mean absolute error&#xff09;&#xff0c;范围[0,∞)&#xff0c;当预测值与真实值完全吻合时等于0&#xff0c;即完美模型&#xff1b;误差越大&#xff0c;该值越大。 Pre、Re…

2023年显著性检测论文及代码汇总

AAAI LeNo: Adversarial Robust Salient Object Detection Networks with Learnable Noise Abstacrt&#xff1a;目前很少有SOD模型对人类视觉注意力难以察觉的对抗性攻击具有鲁棒性。先前的鲁棒显著性ROSA对预分割的超像素进行重组&#xff0c;通过密集连接的条件随机场CRF对…

【显著性检测】Matlab实现Itti显著性检测

目录 理论知识代码步骤读取图像得到金字塔图像提取底层特征计算显著图显著图综合 运行结果展示 理论知识 显著性检测 是指按照人类的视觉注意机制&#xff0c;判断出图像中的显著区域&#xff0c;并为该区域分配较高的显著值&#xff0c;通常认为显著区域更有可能包含目标&…

Opencv之谱残差显著性检测

学习资料参考&#xff1a; 张平.《OpenCV算法精解&#xff1a;基于Python与C》.[Z].北京.电子工业出版社.2017. 前言 在使用谱残差进行显著性检测之前&#xff0c;我们需要理解两个概念&#xff0c;分别是幅度谱和相位谱。 幅度谱和相位谱是将图片进行傅里叶正向变换之后得到的…

显著性检测——GR模型

显著性检测——GR模型 1. Introduction2. Saliency Model2.1 Initial Saliency Map2.2 Saliency Map Refining With Graph Regularization 3. Experiments4. Conclusion参考文献 本人最近在做视觉显著性检测相关的工作&#xff0c;决定把自己的学习经历形成文字&#xff0c;希望…

视频显著性检测----《Flow Guided Recurrent Neural Encoder for Video Salient Object Detection》

本文将重点与大家探讨和分享发表于CVPR2018上的视频显著性检测文章–《Flow Guided Recurrent Neural Encoder for Video Salient Object Detection》&#xff0c;在讨论之前&#xff0c;先带领大家简单回顾一下什么是显著性检测&#xff0c;目前图片显著性检测的常用方法&…

计算机视觉——图像视觉显著性检测

目录 系列文章目录 零、问题描述 一、图像显著性检测 1.定义 2.难点 二、常用评价标准和计算方法 1.综述 2.ROS曲线详述 2.1 混淆矩阵 2.2 ROC曲线简介 2.3 ROC曲线绘制及其判别标准 2.4 ROC曲线补充 三、Fast and Efficient Saliency (FES) 1.算法简介 2.项目导…

显著性检测后处理

将显著性检测图像后处理&#xff0c;绘出一个矩形框&#xff0c;方便使用 先通过边缘检测&#xff0c;然后通过opencv接口实现 结果如下&#xff1a; # --coding:utf # -8-*- import osimport cv2 as cv import numpy as np# canny边缘检测 def canny_demo(image):t 50cann…

基于深度学习的视频显著性检测学习(入门)

一、传统的视频显著性检测 什么是视频显著性检测呢&#xff1f; 我的理解是检测某一段视频的每一帧图片的显著性区域&#xff0c;那这样理解的话就相当于多个图片的显著性检测&#xff0c;所以他是依赖于输入视频帧的对比度、梯度以及纹理来进行相关计算。但既然是视频显著性检…

显著性检测—学习笔记

视觉显著性旨在模仿人类视觉系统选择视觉场景的某个子集的能力。而显著性物体检测&#xff08;SOD&#xff09;则侧重于检测场景中吸引最多注意力的物体&#xff0c;然后逐像素的提取物体的轮廓。SOD的优点在于它在许多计算机视觉任务中均有广泛的应用&#xff0c;包括&#xf…

显著性检测

版权声明&#xff1a;本文为博主原创文章&#xff0c;遵循 CC 4.0 BY-SA 版权协议&#xff0c;转载请附上原文出处链接和本声明。 本文链接&#xff1a; https://blog.csdn.net/qq_32493539/article/details/79530118 转载请附链接&#xff0c;注明出处。 显著性对象检测综述…

在线HTTP接口测试 - HTTP GET/POST模拟请求测试工具

最近发现一个超好用的“在线HTTP接口测试 - HTTP GET/POST模拟请求测试工具”。 链接在此奉上&#xff1a;在线HTTP接口测试 - HTTP GET/POST模拟请求测试工具 很好的一点就是我们只要QQ登录后&#xff0c;就可以记住请求地址&#xff0c;包括请求参数&#xff0c;包括请求co…

https协议的接口测试

用jmeter测试https接口&#xff1a; 和传统的http协议套路不太一样. 注意细节&#xff1a; 1、取样器正常选择http请求&#xff0c;端口号&#xff1a;为443&#xff08;具体根据接口文档我刚开始用的80端口所以错了&#xff09; 2、请求方法&#xff0c;一定一句接口文档&…

接口测试HTTP请求

一、Get请求与Post请求的区别 1.get请求没有请求体&#xff0c;post请求有请求体 2.get请求的参数&#xff08;需要传递的数据&#xff09;要放在URL中发送。大小有限制 post请求的参数可以放在URL后传递&#xff0c;也可以放在请求体中&#xff08;大小不受限制&#xff09…

Jmeter进行http接口测试,这一篇就搞定

jmeter-http接口测试脚本 jmeter进行http接口测试的主要步骤 &#xff08;1.添加线程组 2.添加http请求 3.在http请求中写入接口的URL&#xff0c;路径&#xff0c;请求方式&#xff0c;参数 4.添加查看结果树 5.调用接口&#xff0c;查看返回值&#xff09; 针对接口添加…