Android手机屏幕RTMP推流工具

article/2025/9/26 16:53:26

Android手机屏幕RTMP推流工具是基于ffmpeg+opencv开发的C++(eclipse、androidstudio)程序,是一款可以将安卓手机屏幕上的任何内容推送到任意一款rtmp服务器上的工具,不仅可以分享手机屏幕内容,还可以分享手机上正在播放的视频、正在捕获的相机内容、其它APP正在播放的视频等所有屏幕上可视的内容,同时支持麦克风和内置声音(如QQ音乐等)捕获,是一款类似于户外直播的软件,但直播的不仅仅是摄像头内容。

捕获麦克风版下载地址:https://download.csdn.net/download/XiBuQiuChong/19762295

捕获内部声音版下载地址:https://download.csdn.net/download/XiBuQiuChong/87649385

 

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1hpQnVRaXVDaG9uZw==,size_16,color_FFFFFF,t_70

手机画面

 

 

软件名称:Android手机屏幕RTMP推流工具

开发日志:

2023.4.6 修复VLC无法正常播放BUG。

2021.1.8 支持内部声音捕获,需要android10以上系统。

2021.10.5 解决不定时崩溃问题,目前可以长期稳定运行5小时以上(更长时间没测试)。

2021.10.1 解决后台声音捕获超过1分钟停止捕获的问题。

2021.8.15 修正麦克风音频断续问题。

功能简介:

1.支持手机摄像头推流。

2.支持手机屏幕推流。

3.支持麦克风和内部声音捕获。

4.视频清晰流畅,延迟500ms左右,带宽占用仅1M左右,互联网体验好。

 


http://chatgpt.dhexx.cn/article/QuGMtWVD.shtml

相关文章

三款免费的直播推流软件介绍

三款免费的直播推流软件介绍: 1. Adobe Flash Media Encoder 2. Open Broadcaster Software 3. iAVcast 1)Flash Media Live Encoder 3.2 由著名的Adobe公司出品,值得信赖,Adobe好长时间已经停止更新了&…

tensorflow中的sess.run()

1.feed_dict feed_dict的作用是给使用placeholder创建出来的tensor赋值,feed使用一个值临时替换一个op的输出结果。 2.sess.run() 构建完图后,需要在一个会话中启动图,启动的第一步是创建一个Session对象。在执行sess.run()时,te…

tensorflow sess.run()

函数参数run( fetches, feed_dictNone, optionsNone, run_metadataNone) feed_dict参数的作用是替换图中的某个tensor的值。例如: a tf.add(2, 5) b tf.multiply(a, 3) with tf.Session() as sess: sess.run(b) 21 replace_dict {a: 1…

sess.run()自我理解

import tensorflow as tf a tf.constant([[1,2],[3,4]]) print(a) matrix2 tf.placeholder(float32,[2,2]) matrix1 matrix2#浅拷贝 sess tf.Session() print(sess.run(a)) print(a) asess.run(a) print(a) print(sess.run(matrix2 ,feed_dict{matrix2:a})) #只要是sess.…

Oracle视图学习DBA_HIST_ACTIVE_SESS_HISTORY

dba_hist_active_sess_history:这个视图是用来生成 ASH report 的, 但是 ASH report 并没有充分的利用这个视图的强 大之处,我们通过分析这个视图的详细数据,往往可以找到问题发生的原因. 可以从宏观和微观两个维度来分析这个视图(用 11gR2 的 dba_hist_active_sess_history 做…

tensorflow的sess.run的参数执行顺序

sess.run的多个参数执行 是将整个计算图中所有需要计算的节点,计算完全后一次行输出, 两次print顺序不同,结果不同 import tensorflow as tf# 基础数据 state1 tf.Variable(0, dtypetf.int8,name mi) state tf.Variable(0, dtypetf.int8…

sess.run()

函数:run(fetches, feed_dictNone, optionsNone, run_metadataNone) 当构建完图后,需要在一个session会话中启动图,第一步是创建一个Session对象。 为了取回(Fetch)操作的输出内容, 可以在使用 Session 对象…

Paper Reading:SESS(Self-Ensembling Semi-supervised3D ObjectDetction)

BackGround 虽然3D点云的目标检测当前运用十分广泛,但是当前大部分3D目标检测的方法强依赖于带有标注的数据。这些带有标注的数据往往是需要付出昂贵的代价,在2021年的水平大概是¥0.1一个框,那么一帧数据也就是对应的&#xffe5…

SESS: Self-Ensembling Semi-Supervised 3D Object Detection论文阅读及理解

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Abstract 3d检测通常以来目标的标签和注释,然而获得这些注释是十分困难的。 SESS一种自集成的半监督三维目标检测框架。 设计了一种扰动方案,加强对未标记数据和新的为可见数据的泛化。 …

Elasticsearch——》ngram分词器

推荐链接: 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

Elasticsearch 的 NGram 分词器使用技巧

一、什么是NGram 分词器? NGram分词器是ES自带的具有前缀匹配搜索功能的一个文本分词器。它能根据文本的步长逐步对写入的文本内容进行约束切割; 二、NGram和index-time搜索推荐原理 搜索的时候,不用再根据一个前缀,然后扫描整个倒排索引了…

Ngram模型

N-Gram是大词汇连续语音识别中常用的一种语言模型,对中文而言,我们称之为汉语语言模型(CLM, Chinese Language Model)。汉语语言模型利用上下文中相邻词间的搭配信息,在需要把连续无空格的拼音、笔划,或代表字母或笔划的数字&…

ElasticSearch之ngram分词器

一、什么是NGram 分词器? edge_ngram和ngram是ElasticSearch自带的两个分词器,一般设置索引映射的时候都会用到,设置完步长之后,就可以直接给解析器analyzer的tokenizer赋值使用。 二、怎么使用 完整的索引结构: {&…

MySql的Ngram全文索引

前言 在我们日常开发中,很多时候会遇到对数据库中某个字段模糊查询的需求,也就是like某个字段,但是很多公司像阿里,京东都禁止使用like来对数据库进行模糊查询,原因是啥呢? 我们先来看下面三条语句 其中t…

语言模型-Ngram

总结工作中用到和学习的知识,也算自己的一个笔记。 语言模型 语言模型简单来讲,就是计算一个句子的概率,更确切的说是计算组成这个句子一系列词语的概率。 举个简单的例子,我们知道“武松打死了老虎”相比于“老虎了死武松打”,更像是一句正常的话,这是因为前者出…

N-gram算法

语言模型 语言模型起源于语音识别(speech recognition),输入一段音频数据,语音识别系统通常会生成多个句子作为候选,究竟哪个句子更合理?就需要用到语言模型对候选句子进行排序。 语言模型:对于任意的词序列&#xf…

N-Gram语言模型

一、n-gram是什么 wikipedia上有关n-gram的定义: n-gram是一种统计语言模型,用来根据前(n-1)个item来预测第n个item。在应用层面,这些item可以是音素(语音识别应用)、字符(输入法应用)、词&am…

MATLAB 离散傅里叶变换(DFT)、逆离散傅里叶变换(IDFT)、快速傅里叶变换(FFT)的实现

离散傅里叶变换(DFT)、逆离散傅里叶变换(IDFT)的实现 代码如下,其中xn为时序序列 clc;clear; xn[7,6,5,4,3,2]; Xkdft(xn,6); xidft(Xk,6);subplot(2,2,1);stem(0:5,abs(Xk),filled); axis([0,5,0,1.1*max(abs(Xk))]…

图像处理基础(三)DFT与IDFT变换

傅里叶变换(DFT) 首先来看看傅里叶(DFT)变换的公式 (1) FP\frac {1}{N}\sum_{x0}^{N-1}\sum_{y0}^{N-1}P_{x,y}\exp(-j(\frac{2 \pi}{N})(uxvy)) 幅度 (2) w\sqrt{u^2v^2} 其中 u,v代表空间频率,即灰度梯度,梯度由坐标与灰度值求导的向量 w代表 振幅…

第4章 Python 数字图像处理(DIP) - 频率域滤波7 - 二维DFT和IDFT的一些性质 - 傅里叶频谱和相角

目录 二维DFT和IDFT的一些性质傅里叶频谱和相角 二维DFT和IDFT的一些性质 傅里叶频谱和相角 F ( u , v ) R ( u , v ) j I ( u , v ) ∣ F ( u , v ) ∣ e j ϕ ( u , v ) (4.86) F(u, v) R(u, v) jI(u, v) |F(u, v)|e^{j\phi(u,v)} \tag{4.86} F(u,v)R(u,v)jI(u,v)∣F(…