sess.run()

article/2025/9/26 19:05:36

函数:run(fetches,   feed_dict=None,    options=None,    run_metadata=None)

当构建完图后,需要在一个session会话中启动图,第一步是创建一个Session对象。

为了取回(Fetch)操作的输出内容, 可以在使用 Session 对象的 run()调用执行图时,传入一些 tensor, 这些 tensor 会帮助你取回结果。

在python语言中,返回的tensor是numpy ndarray对象。

import tensorflow as tf#创建一个变量。在默认的图中创建节点,这个节点是一个变量,命名为“counter”
state = tf.Variable(0, name="counter")#创建一个常量
one = tf.constant(1)#创建一个op。对常量与变量进行简单的加法操作,这点需要说明的是: 在TensoorFlow中,
#所有的操作op和变量都视为节点,tf.add() 的意思就是在tf的默认图中添加一个op,这个op是用来做加法操作的。
new_value = tf.add(state,one)#赋值操作。将new_value的值赋值给update变量
update = tf.assign(state,new_value)#此处用于初始化变量。但是这句话仍然不会立即执行。需要通过sess来将数据流动起来 。如果有Variable,一定需要写这句话
init = tf.initialize_all_variables()#启动图,运行op
with tf.Session() as sess:#对变量进行初始化,真正的赋值操作sess.run(init)#循环3次,并且打印输出。for _ in range(3):sess.run(update)# 打印变量时也需要用sess.runprint(sess.run(state))

 

1.执行sess.run()时,tensorflow是否计算了整个图


我们在编写代码的时候,总是要先定义好整个图,然后才调用sess.run()。那么调用sess.run()的时候,程序是否执行了整个图

import tensorflow as tf
state = tf.Variable(0.0,dtype=tf.float32)
one = tf.constant(1.0,dtype=tf.float32)
new_val = tf.add(state, one)
update = tf.assign(state, new_val) #返回tensor, 值为new_val
update2 = tf.assign(state, 10000)  #没有fetch,便没有执行
init = tf.initialize_all_variables()
with tf.Session() as sess:sess.run(init)for _ in range(3):print sess.run(update)

我们仅仅是fetch “update”,输出是1.0 , 2.0, 3.0,可以看出,tensorflow并没有计算整个图,只是计算了与想要fetch 的值相关的部分。

 

2.sess.run() 中的feed_dict

features_, labels_, indexs_ = sess.run([features, labels, indexs])

feed_dict参数的作用是替换图中的某个tensor的值或设置graph的输入值。

(1)是否需要进行传参feed_dict

需要看features, labels, indexs这3个变量的产生是否存在于“一个需要传参的函数中”,如果产生features, labels, indexs这3个变量的函数的形式像下面这样

def xxx():

    X = tf.placeholder(dtype=tf.float32, shape=([50,93]))
    Y = tf.placeholder(dtype=tf.int32, shape=([50]))
    Z = tf.placeholder(dtype=tf.int32, shape=([50]))      

    ...

    return features, labels, indexs

features, labels, indexs = xxx()

那么这时候features_, labels_, indexs_ = sess.run([features, labels, indexs]),就需要写成下面这样

features_, labels_, indexs_ = sess.run([features, labels, indexs], feed_dict={X:features_, Y:labels_, Z:indexs_})

并且要注意feed_dict不接受tensor格式的数据,所以features_需要是普通格式,比如numpy,但是传参进去后,会自动进行类型的转化,在xxx()函数中,他们就变成tensor格式

(2)是否执行一次sess.run函数,代码里的“数据迭代生成器”就会更新一次batch

那要取决于sess.run函数里面的参数是否与“数据迭代生成器”有关

假如features, labels, indexs = input_fn(),input_fn()函数每执行一次,就生成一个batch的数据,那么这种sess.run([features, labels, indexs])每每执行一次 就会更新一个batch的数据

举个反面的例子,也就是即使执行了2000次sess.run(),也不会更新batch的数据

pred_new_2 = sess.run([pred_new_1], feed_dict={X:features_, Y:labels_, Z:indexs_})。这里pred_new_1的产生函数 就必须要传进来3个参数,所以有feed_dict传参

当前pred_new_1并不是和“数据迭代生成器”有关,而是另外一个函数的返回结果,那么就符合我的举例

(3)sess.run()可以将tensor格式转成numpy格式

可以用来很方便的将一些tensor格式的数据,进行数据具体内容查看,也就是将tensor格式转成numpy格式,上面的所有例子都是这种作用
 

(4)feed 只在调用它的方法内有效
我们都知道feed_dict的作用是给使用placeholder创建出来的tensor赋值。其实,他的作用更加广泛:feed 使用一个值临时替换一个 op 的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失。

import tensorflow as tf
y = tf.Variable(1)
b = tf.identity(y)
with tf.Session() as sess:tf.global_variables_initializer().run()print(sess.run(b,feed_dict={y:3})) #使用3 替换掉#tf.Variable(1)的输出结果,所以打印出来3 #feed_dict{y.name:3} 和上面写法等价print(sess.run(b))  #由于feed只在调用他的方法范围内有效,所以这个打印的结果是 1

 

3.用sess.run()有两种情况:

(1)想要获取某个变量的时候:

(2)执行某种操作的时候,这个操作不是一个变量,没有值,如下图n这个更新操作,还包括神经网络训练的时候的optimizer:

 

4.其他:

(1)TensorFlow与我们正常的编程思维略有不同:TensorFlow中的语句不会立即执行;而是等到开启会话session的时候,才会执行session.run()中的语句。如果run中涉及到其他的节点,也会执行到。

(2)Tesorflow模型中的所有的节点都是可以视为运算操作op或tensor
 

 

--------------------------------------------------------------------------------------------------------- 
原文:

https://blog.csdn.net/u012436149/article/details/52908692

https://blog.csdn.net/a1066196847/article/details/84104655

https://blog.csdn.net/zxyhhjs2017/article/details/82492306

https://blog.csdn.net/gqixf/article/details/82021878


http://chatgpt.dhexx.cn/article/NT8kdo7m.shtml

相关文章

Paper Reading:SESS(Self-Ensembling Semi-supervised3D ObjectDetction)

BackGround 虽然3D点云的目标检测当前运用十分广泛,但是当前大部分3D目标检测的方法强依赖于带有标注的数据。这些带有标注的数据往往是需要付出昂贵的代价,在2021年的水平大概是¥0.1一个框,那么一帧数据也就是对应的&#xffe5…

SESS: Self-Ensembling Semi-Supervised 3D Object Detection论文阅读及理解

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Abstract 3d检测通常以来目标的标签和注释,然而获得这些注释是十分困难的。 SESS一种自集成的半监督三维目标检测框架。 设计了一种扰动方案,加强对未标记数据和新的为可见数据的泛化。 …

Elasticsearch——》ngram分词器

推荐链接: 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…

Elasticsearch 的 NGram 分词器使用技巧

一、什么是NGram 分词器? NGram分词器是ES自带的具有前缀匹配搜索功能的一个文本分词器。它能根据文本的步长逐步对写入的文本内容进行约束切割; 二、NGram和index-time搜索推荐原理 搜索的时候,不用再根据一个前缀,然后扫描整个倒排索引了…

Ngram模型

N-Gram是大词汇连续语音识别中常用的一种语言模型,对中文而言,我们称之为汉语语言模型(CLM, Chinese Language Model)。汉语语言模型利用上下文中相邻词间的搭配信息,在需要把连续无空格的拼音、笔划,或代表字母或笔划的数字&…

ElasticSearch之ngram分词器

一、什么是NGram 分词器? edge_ngram和ngram是ElasticSearch自带的两个分词器,一般设置索引映射的时候都会用到,设置完步长之后,就可以直接给解析器analyzer的tokenizer赋值使用。 二、怎么使用 完整的索引结构: {&…

MySql的Ngram全文索引

前言 在我们日常开发中,很多时候会遇到对数据库中某个字段模糊查询的需求,也就是like某个字段,但是很多公司像阿里,京东都禁止使用like来对数据库进行模糊查询,原因是啥呢? 我们先来看下面三条语句 其中t…

语言模型-Ngram

总结工作中用到和学习的知识,也算自己的一个笔记。 语言模型 语言模型简单来讲,就是计算一个句子的概率,更确切的说是计算组成这个句子一系列词语的概率。 举个简单的例子,我们知道“武松打死了老虎”相比于“老虎了死武松打”,更像是一句正常的话,这是因为前者出…

N-gram算法

语言模型 语言模型起源于语音识别(speech recognition),输入一段音频数据,语音识别系统通常会生成多个句子作为候选,究竟哪个句子更合理?就需要用到语言模型对候选句子进行排序。 语言模型:对于任意的词序列&#xf…

N-Gram语言模型

一、n-gram是什么 wikipedia上有关n-gram的定义: n-gram是一种统计语言模型,用来根据前(n-1)个item来预测第n个item。在应用层面,这些item可以是音素(语音识别应用)、字符(输入法应用)、词&am…

MATLAB 离散傅里叶变换(DFT)、逆离散傅里叶变换(IDFT)、快速傅里叶变换(FFT)的实现

离散傅里叶变换(DFT)、逆离散傅里叶变换(IDFT)的实现 代码如下,其中xn为时序序列 clc;clear; xn[7,6,5,4,3,2]; Xkdft(xn,6); xidft(Xk,6);subplot(2,2,1);stem(0:5,abs(Xk),filled); axis([0,5,0,1.1*max(abs(Xk))]…

图像处理基础(三)DFT与IDFT变换

傅里叶变换(DFT) 首先来看看傅里叶(DFT)变换的公式 (1) FP\frac {1}{N}\sum_{x0}^{N-1}\sum_{y0}^{N-1}P_{x,y}\exp(-j(\frac{2 \pi}{N})(uxvy)) 幅度 (2) w\sqrt{u^2v^2} 其中 u,v代表空间频率,即灰度梯度,梯度由坐标与灰度值求导的向量 w代表 振幅…

第4章 Python 数字图像处理(DIP) - 频率域滤波7 - 二维DFT和IDFT的一些性质 - 傅里叶频谱和相角

目录 二维DFT和IDFT的一些性质傅里叶频谱和相角 二维DFT和IDFT的一些性质 傅里叶频谱和相角 F ( u , v ) R ( u , v ) j I ( u , v ) ∣ F ( u , v ) ∣ e j ϕ ( u , v ) (4.86) F(u, v) R(u, v) jI(u, v) |F(u, v)|e^{j\phi(u,v)} \tag{4.86} F(u,v)R(u,v)jI(u,v)∣F(…

实数序列频谱的共轭对称性(DFT与IDFT仿真实现)

一、基础知识 1、傅里叶变换:通俗来讲,是以时间为自变量的信号与以频率为自变量的“频谱函数”之间的某种转换关系。 DFT:即离散傅里叶变换,对离散序列进行傅里叶变换。设x(n)为长度为M的有限长序列,其N点DFT定义(公…

第4章 Python 数字图像处理(DIP) - 频率域滤波8 - 二维DFT和IDFT的一些性质 - 二维离散卷积定理

目录 二维DFT和IDFT的一些性质二维离散卷积定理二维离散傅里叶变换性质的小结 二维DFT和IDFT的一些性质 二维离散卷积定理 二维循环卷积表达式: ( f ⋆ h ) ( x , y ) ∑ m 0 M − 1 ∑ n 0 N − 1 f ( m , n ) h ( x − m , y − n ) (4.94) (f \star h)(x, …

FFT学习笔记(DFT,IDFT)

昨天参悟了一天FFT,总算是理解了,今天的莫比乌斯反演也不太懂,干脆弃疗,决定来认真水一发博客。 什么是FFT? FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换&…

【OpenCV4】图像的傅里叶变换 cv::dft() 和逆变换 cv::idft() 解析(c++)

图像傅里叶变换的作用: 频谱分析,获取图像中高频低频的分布情况快速卷积,两个矩阵的傅里叶变换结果相乘 案例代码: cv::Mat TestOpencvDft() {cv::Mat lena cv::imread("lena.jpg", 0);cv::resize(lena, lena, cv::…

Matlab如何进行利用离散傅里叶逆变换iDFT 从频谱恢复时域信号

文章目录 1. 定义2. 变换和处理3. 函数4. 实例演示例1:单频正弦信号(整数周期采样)例2:含有直流分量的单频正弦信号例3:正弦复合信号例4:含有随机干扰的正弦信号例5:实际案例 5. 联系作者 1. 定…

离散傅里叶变换(DFT/IDFT、FFT/IFFT)运算量的讨论

前言:关于为什么要写这个博客 最近在重新看《合成孔径雷达成像 算法与实现》这本书,看到“离散傅里叶变换记其逆变换的运算量级为”这句话,就想起当初在学《数字信号处理》中FFT那章节时,书中有对比DFT和FFT的运算量的一些文字&am…

OpenCV-离散傅里叶变换cv::dftcv::idft

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 函数原型 void dft(InputArray src, OutputArray dst, int flags 0, int nonzeroRows 0); void idft(InputArray src, Output…