实用干货!因子分析超全步骤总结

article/2025/7/19 20:06:21

因子分析是统计数据分析方法之一,因子分析包括探索性因子分析和验证性因子分析。本文主要讨论探索性因子分析。

 

一、研究背景

关于工作满意度有14个问题,调研得到215份问卷结果。希望通过因子分析,用少量因子反映14个题目的信息,从而达到降低维度,便于分析的目的,并对因子命名用于后续分析。

 

二、分析步骤

 

Step1数据准备:

依据研究目的,收集相关数据。本例中就是我们收集得到的14个问题的有关数据。

因子分析要求数据一定为定量数据,问卷数据一般为量表题。

 

Step2选项设置:

点击【进阶方法】--【因子分析】。

 

 

将分析项拖拽至右侧,点击[开始分析],即可得到分析结果。

 

 

  • 设置[因子个数]:如果有预期想提取的因子个数,可以主动设置输出的因子个数。
  • 勾选[因子得分]:可自动保存因子得分。
  • 勾选[综合得分]:可自动保存综合得分。

 

Step3结果解释:

①判断数据是否适合因子分析

首先考察收集到的原有变量适不适合进行因子分析,我们利用KMO检验和Bartlett的检验结果进行判断。

 

表1:KMO和Bartlett的检验

 

上表展示KMO检验和Bartlett的检验结果

通常KMO值的判断标准为0.6。大于0.6说明适合进行分析,反之,说明不适合进行分析。同时Bartlett检验对应P值小于0.05也说明适合分析。

SPSSAU输出的结果中会给出智能解读结果,直接查看智能分析:

 

 

②判断提取因子个数

多数情况下,我们在分析时已经带着主观预期,希望题项如何归类,此时可以直接设置对应的因子个数。

本例中,工作满意度预期分为4个维度,因此将因子个数设为4。再进行分析。

 

因子个数设为4

表2:方差解释率表格

 

方差解释率表格,主要用于判断提取多少个因子合适。以及每个因子的方差解释率和累计方差解释率情况。方差解释率越大说明因子包含原数据信息的越多。因子分析中,主要关注旋转后的数据部分。

从上表可知:本次共提取了4个因子。此4个因子旋转后的方差解释率分别是24.993%,22.049%,20.191%,18.809%,旋转后累积方差解释率为86.042%。

说明4个因子能够提取14个分析项86.042%的信息量,这个值没有固定标准,一般超过60%都可以接受。

 

如果研究人员并没有预设维度。而选择默认选项,SPSSAU默认以特征根大于1作为标准。

 

特征根:指标旋转前每个因子的贡献程度。此值的总和与项目数匹配,此值越大,代表因子贡献越大。

当然因子分析通常需要综合自己的专业知识综合判断,即使是特征根值小于1,也一样可以提取因子。

碎石图

 

同时可结合碎石图辅助判断因子提取个数。当折线由陡峭突然变得平稳时,陡峭到平稳对应的因子个数即为参考提取因子个数。

实际研究中更多以专业知识,结合因子与研究项对应关系情况,综合权衡判断得出因子个数。

 

③判断因子与题项对应关系

上面提到确定因子提取个数除了要考虑以上指标,更重要的是结合因子与研究项对应关系情况判断。

因子载荷系数表,正是反映因子和研究项对应关系情况。

表3:旋转后因子载荷系数表格

 

从结果中可以看出,使用因子分析对14个项进行浓缩处理,浓缩为四个因子。

因子与题项对应关系,其中Q12-Q14在F1因子上有较高的载荷,说明F1因子可以解释这几个分析项,它们主要反映了工作报酬方面的满意度;

Q9-Q11在F2上有较高的载荷,它们主要反映了领导管理方面的满意度;

Q5-Q8在F3上有较高的载荷,它们主要反映了工作环境方面的满意度;

Q1-Q4在F1上有较高的载荷,它们主要反映了个人发展方面的满意度。

 

Step4结果调整:

如果出现因子分析结果与预期结果不一致,这种情况是非常常见的。对于不理想的题项可以移出该项,再次分析,直至所有分析项与因子对应关系良好。

 

如果出现以下3种问题,则需要对不合理题项进行删除:

第一类:如果分析项的共同度值小于0.4,则对应分析项应该作删除处理;

第二类:某分析项对应的”因子载荷系数”的绝对值,全部均小于0.4,也需要删除此分析项;

第三类:如果某分析项与因子对应关系出现严重偏差(通常也称作‘张冠李戴’),也需要对该分析项进行删除处理。

这部分在帮助手册中有详细介绍,有需要可阅读帮助手册中对应内容:

https://spssau.com/front/spssau/helps/advancedmethods/factor.html

 

Step5因子命名:

当确定了最终提取的因子数及题项对应关系,即可对提取的因子命名。

可以结合旋转后的因子载荷矩阵结果进行命名,最终将四个因子分别命名为F1工作报酬、F2领导管理、F3工作环境、F4个人发展。

 

三、后续分析

因子分析往往是预处理步骤,后续还需要结合具体研究目的进行分析,如回归分析、聚类分析等。

此时,可能需要用到因子得分,返回分析页面勾选[因子得分]即可生成因子得分。

 

 

如果是量表数据,建议通过【数据处理】--【生成变量】计算均值得到维度均值,用于后续研究。

 

 

四、其他说明

有关因子分析过程中可能遇到的问题,在之前的文章已经整理过,具体可参考:因子分析常见问题汇总,你想知道的都在这里

 


http://chatgpt.dhexx.cn/article/OdflYIbw.shtml

相关文章

NLP | 朴素贝叶斯法的学习与分类

朴素贝叶斯法的学习与分类 《统计学习方法》李航第四章 1、概述 书上对朴素贝叶斯的描述如下: 朴素贝叶斯法时基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然…

标定相机参数-张正友方法

一、实验原理 1.计算外参 设三维世界坐标的点为M=[X,Y,Z,1]T,二维相机平面像素坐标为m=[u,v,1]T,所以标定用的棋盘格平面到图像平面的单应性关系为: sm=A[R,t]M 其中 不妨设棋盘格位于Z = 0,定义旋转矩阵R的第i列为 ri, 则有: 令H=[h1 h2 h3]=λA[r1 r2 t] 于是空间到图…

《统计学习方法》——朴素贝叶斯法

引言 朴素贝叶斯法(Naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常用的方法。 这一章需要大量的概率论知识,忘记了的同学建议先参阅人工智能数学基础之概率论。 朴素贝…

数据挖掘十大算法之 naïve Bayes

朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的分类方法。朴素贝叶斯法实现简单,学习与预测的效率都很高,被广泛应用于文本分类、垃圾邮件过滤、自然语言处理等场景。下面我们来介绍贝叶斯定理,在介绍贝叶斯定理之前,先介绍下…

专题:深度神经网络基本问题的原理详细分析和推导

文章目录 **写在最前面****1 神经网络算法的直观了解****1.1 神经网络过程描述**:**1.2 神经网络相关的几个问题****1.2.1 表征假设和激活函数** **1.2.2 结构设计(Architecture Design)****1.2.3 代价函数(Cost Function)和优化目标(Optimization objective)****1.…

第四章 朴素贝叶斯法

文章目录 朴素贝叶斯法的学习与分类基本方法数据定义学习联合概率分布如何求出条件概率分布?如何分类? 后验概率最大化的含义 朴素贝叶斯的参数估计法极大似然估计学习分类算法贝叶斯估计 朴素贝叶斯法(与贝叶斯估计是不同的概念)…

GAN生成对抗式神经网络数学推导

由上面一篇文章我们已经知道了,如果我们从真实数据分布里面取n个样本,根据给定样本我们可以列出其出现概率的表达式,那么生成这N个样本数据的似然(likelihood)就是 l ( θ ) ∏ i 1 N p ( x i ∣ θ ) l ( \theta ) \prod _ { i 1 } ^ { …

《统计学习方法》学习笔记(三)之 朴素贝叶斯法

朴素贝叶斯法 总述 朴素贝叶斯法是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练数据集,首先基于特征独立性假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最…

朴素贝叶斯(二)|极大似然估计+学习与分类算法+贝叶斯估计| 《统计学习方法》学习笔记(十六)

朴素贝叶斯法的参数估计 1. 极大似然估计 在朴素贝叶斯法中,学习意味着估计 P ( Y c k ) P(Yc_k) P(Yck​)和 P ( X ( j ) x ( j ) ∣ Y c k ) P(X^{(j)}x^{(j)}|Yc_k) P(X(j)x(j)∣Yck​)。可以应用极大似然估计法估计相应的概率。先验概率 P ( Y c k ) P(Yc…

一文看懂 “极大似然估计” 与 “最大后验估计” —— 最大后验估计篇

本文历次修订后全长 2万8000余字,受到 CSDN 博文字数限制,故切分两篇发布,所以现在是两文看懂了… 前篇介绍参数估计背景和极大似然估计;本篇介绍最大后验估计和两种方法对比请务必先看前文:一文看懂 “极大似然估计”…

【生成模型】极大似然估计,你必须掌握的概率模型

上一期为大家说明了什么是无监督生成模型。在无监督生成模型中,极大似然法一直扮演着非常核心的位置,我们必须对它有深刻的理解,本期小米粥将为大家讲一下极大似然法的那些事情。 作者&编辑 | 小米粥 1 一个小游戏:取球猜概率…

透彻理解机器学习中极大似然估计MLE的原理(附3D可视化代码)

文章目录 相关资料一、什么是概率,什么是似然二、极大似然估计 Maximum Likelihood Estimation (MLE) 的含义2.1 机器学习中的极大化似然函数2.2 极大似然估计和损失函数的关系VAE最大化似然函数推导出损失函数 三、代码可视化:极大似然估计3.1 似然函数…

C#RSA密码以及利用欧几里得算法实现两数互质的判断

最近做课程设计,想到以前看过RSA密码的相关内容,于是就想用刚学的C#做一个数字加密系统。RSA加密的流程如下: 来看一个“玩具式”的例子: (1)选取两个素数p2,q11,于是N22. (2)构造数,这是小于22且不含因数2和11的自然数的个数。 (3)选一个…

判断两数互质,java实现

数组下标i和j值互质时,a[i][j] true,反之false Write a program to create an n * n Boolean array. If I and j are coprime, a [i] [J] is true, otherwise it is false /** * When Array index Mutuality ,a[i][j] true,else is false * 数组i和j值互质时&…

两个质数互质是_两个数互质是什么意思 如何判断

互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。下面是小编整理的详细内容,一起来看看吧! 两个数互质是什么意思 质数为数学中的一种概念,即两个或多…

char、wchar_t、ACHAR、WCHAR、TCHAR

最近用到上面几种不同的字符类型,下面贴上在网上收集到的资料。 1、char 单字节变量类型,最多表示256个字符。 2、wchar_t 宽字节变量类型,用于表示Unicode字符,它实际定义在<string.h>里:typedef unsigned short wchar_t。 定义宽字节类型方法如下: wchar_…

wchar* 转换成 string

wchar* 转换成 string 123 windows 类型转换问题 1 // Your wchar_t* wstring ws(L"Hello World"); // your new String std::string str(ws.begin(), ws.end()); // Show String std::cout << str << std::endl; 2 std::wstring wstr(L"Test&…

wchar_t类型

今天在看前辈的项目的时候学习到了一个以前没有通过的数据类型&#xff1a;宽字符wchar_t类型。 先来看看他占多大的空间吧&#xff0c; 从图中可以看到wchar_t占的空间的大小为2个字节&#xff0c; 然后来确定一下他是无符号还是有符号的 由上图可见&#xff0c;他应该是无符号…

char与wchar_t字符串

C里的字符串类型是比较二的&#xff0c;因为有太多表示方法&#xff1a;char*、string、字符串数组、wchar_t*、wstring&#xff0c;今天就来缕一缕这些玩意。 char* char* 貌似是C字符串最基础最核心的。 看以下四个字符串声明及输出结果&#xff1a; 先说说核心&#xff0c…

wchar_t的用法

wchar_t的解释可以看这里:这里 程序和解析: 1 # include<stdio.h>2 # include<stdlib.h>3 # include<locale.h>//设置本地化<