文章目录
- 相关
- 二维列联表相关
- 协方差
- Pearson相关
- Spearman相关
- 相关性检验
- 相关可视化
相关
二维列联表相关
data <- xtabs(~Treatment+Improved, data = Arthritis) assocstats(data)

协方差
states <- state.x77[,1:6]
cov(states)

Pearson相关
cor(states)x <- states[,c("Population","Income","Illiteracy","HS Grad")]
y <- states[,c("Life Exp","Murder")]
cor(x,y)

Spearman相关
cor(states,method = "spearman")

相关性检验
cor.test(states[,1],states[,2],alternative = "two.side",method = "spearman") library(psych)corr.test(states,use = "complete") corr.test(states,use = "pairwise") pcor(c(1,5,2,3,6),cov(states)) pcor.test(pcor(c(1,5,2,3,6),cov(states)) ,c(2,3,6),50)

相关可视化
library(corrplot)
res <- cor(states)cols <- colorRampPalette(c("red", "white", "blue"))
corrplot.mixed(res,lower.col = cols(100),upper.col = cols(100),tl.pos="lt",tl.col="black")
