ResNet18的搭建请移步:使用PyTorch搭建ResNet18网络并使用CIFAR10数据集训练测试
ResNet34的搭建请移步:使用PyTorch搭建ResNet34网络
ResNet34的搭建请移步:使用PyTorch搭建ResNet50网络
参照我的ResNet50的搭建,由于50层以上几乎相同,叠加卷积单元数即可,所以没有写注释。
ResNet101和152的搭建注释可以参照我的ResNet50搭建中的注释
ResNet101和152的训练可以参照我的ResNet18搭建中的训练部分
ResNet101和152可以依旧参照ResNet50的网络图片:
上代码:
ResNet101的model.py模型:
import torch
import torch.nn as nn
from torch.nn import functional as Fclass DownSample(nn.Module):def __init__(self, in_channel, out_channel, stride):super(DownSample, self).__init__()self.down = nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),nn.BatchNorm2d(out_channel),nn.ReLU(inplace=True))def forward(self, x):out = self.down(x)return outclass ResNet101(nn.Module):def __init__(self, classes_num): # 指定分类数super(ResNet101, self).__init__()self.pre = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# --------------------------------------------------------------------self.layer1_first = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256))self.layer1_next = nn.Sequential(nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256))# --------------------------------------------------------------------self.layer2_first = nn.Sequential(nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512))self.layer2_next = nn.Sequential(nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512))# --------------------------------------------------------------------self.layer3_first = nn.Sequential(nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(1024))self.layer3_next = nn.Sequential(nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(1024))# --------------------------------------------------------------------self.layer4_first = nn.Sequential(nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(2048))self.layer4_next = nn.Sequential(nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(2048))# --------------------------------------------------------------------self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Sequential(nn.Dropout(p=0.5),nn.Linear(2048 * 1 * 1, 1000),nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(1000, classes_num))def forward(self, x):out = self.pre(x)# --------------------------------------------------------------------layer1_shortcut = DownSample(64, 256, 1)layer1_shortcut.to('cuda:0')layer1_identity = layer1_shortcut(out)out = self.layer1_first(out)out = F.relu(out + layer1_identity, inplace=True)for i in range(2):identity = outout = self.layer1_next(out)out = F.relu(out + identity, inplace=True)# --------------------------------------------------------------------layer2_shortcut = DownSample(256, 512, 2)layer2_shortcut.to('cuda:0')layer2_identity = layer2_shortcut(out)out = self.layer2_first(out)out = F.relu(out + layer2_identity, inplace=True)for i in range(3):identity = outout = self.layer2_next(out)out = F.relu(out + identity, inplace=True)# --------------------------------------------------------------------layer3_shortcut = DownSample(512, 1024, 2)layer3_shortcut.to('cuda:0')layer3_identity = layer3_shortcut(out)out = self.layer3_first(out)out = F.relu(out + layer3_identity, inplace=True)for i in range(22):identity = outout = self.layer3_next(out)out = F.relu(out + identity, inplace=True)# --------------------------------------------------------------------layer4_shortcut = DownSample(1024, 2048, 2)layer4_shortcut.to('cuda:0')layer4_identity = layer4_shortcut(out)out = self.layer4_first(out)out = F.relu(out + layer4_identity, inplace=True)for i in range(2):identity = outout = self.layer4_next(out)out = F.relu(out + identity, inplace=True)# --------------------------------------------------------------------out = self.avg_pool(out)out = out.reshape(out.size(0), -1)out = self.fc(out)return out
ResNet152的model.py模型:
import torch
import torch.nn as nn
from torch.nn import functional as Fclass DownSample(nn.Module):def __init__(self, in_channel, out_channel, stride):super(DownSample, self).__init__()self.down = nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=stride, padding=0, bias=False),nn.BatchNorm2d(out_channel),nn.ReLU(inplace=True))def forward(self, x):out = self.down(x)return outclass ResNet152(nn.Module):def __init__(self, classes_num): # 指定了分类数目super(ResNet152, self).__init__()self.pre = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))# -----------------------------------------------------------------------self.layer1_first = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256))self.layer1_next = nn.Sequential(nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.Conv2d(64, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256))# -----------------------------------------------------------------------self.layer2_first = nn.Sequential(nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512))self.layer2_next = nn.Sequential(nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True),nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512))# -----------------------------------------------------------------------self.layer3_first = nn.Sequential(nn.Conv2d(512, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(1024))self.layer3_next = nn.Sequential(nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, 1024, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(1024))# -----------------------------------------------------------------------self.layer4_first = nn.Sequential(nn.Conv2d(1024, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(2048))self.layer4_next = nn.Sequential(nn.Conv2d(2048, 512, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True),nn.Conv2d(512, 2048, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(2048))# -----------------------------------------------------------------------self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Sequential(nn.Dropout(p=0.5),nn.Linear(2048 * 1 * 1, 1000),nn.ReLU(inplace=True),nn.Dropout(p=0.5),nn.Linear(1000, classes_num))def forward(self, x):out = self.pre(x)# -----------------------------------------------------------------------layer1_shortcut = DownSample(64, 256, 1)# layer1_shortcut.to('cuda:0')layer1_identity = layer1_shortcut(out)out = self.layer1_first(out)out = F.relu(out + layer1_identity, inplace=True)for i in range(2):identity = outout = self.layer1_next(out)out = F.relu(out + identity, inplace=True)# -----------------------------------------------------------------------layer2_shortcut = DownSample(256, 512, 2)# layer2_shortcut.to('cuda:0')layer2_identity = layer2_shortcut(out)out = self.layer2_first(out)out = F.relu(out + layer2_identity, inplace=True)for i in range(7):identity = outout = self.layer2_next(out)out = F.relu(out + identity, inplace=True)# -----------------------------------------------------------------------layer3_shortcut = DownSample(512, 1024, 2)# layer3_shortcut.to('cuda:0')layer3_identity = layer3_shortcut(out)out = self.layer3_first(out)out = F.relu(out + layer3_identity, inplace=True)for i in range(35):identity = outout = self.layer3_next(out)out = F.relu(out + identity, inplace=True)# -----------------------------------------------------------------------layer4_shortcut = DownSample(1024, 2048, 2)# layer4_shortcut.to('cuda:0')layer4_identity = layer4_shortcut(out)out = self.layer4_first(out)out = F.relu(out + layer4_identity, inplace=True)for i in range(2):identity = outout = self.layer4_next(out)out = F.relu(out + identity, inplace=True)# -----------------------------------------------------------------------out = self.avg_pool(out)out = out.reshape(out.size(0), -1)out = self.fc(out)return out