什么是MSE?
参数估计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE
MSE(均方误差)在深度学习中主要用来求损失函数,既真实值和预测值之间的误差。

公式中的y是真实值,out是你计算出来的值,让它们求和累加再除以N(N是你进行前向传播时你设置的batch)
在Tensorflow2.0中的使用

什么是Cross Entropy(交叉熵)?
要理解什么的交叉熵就要先知道什么是熵?
事实上,熵的英文原文为entropy,最初由德国物理学家鲁道夫·克劳修斯提出,其表达式为:
它表示一个系系统在不受外部干扰时,其内部最稳定的状态。
1948年,香农Claude E. Shannon引入信息(熵),将其定义为离散随机事件的出现概率。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高。所以说,信息熵可以被认为是系统有序化程度的一个度量。
若无特别指出,下文中所有提到的熵均为信息熵。
熵:如果一个随机变量X的可能取值为X = {x1, x2,…, xk},其概率分布为P(X = xi) = pi(i = 1,2, …, n),则随机变量X的熵定义为:

把最前面的负号放到最后,便成了:

交叉熵是指两个分布之间的信息标准。叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。

在tensorflow2.0中的使用

为什么 Cross Entropy(交叉熵)比MSE(均方误差)用的更多
交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。
损失函数梯度对比-均方差和交叉熵







![已解决OSError: [WinError 6] 句柄无效。](https://img-blog.csdnimg.cn/a74f7d5d03234f7c8a635562034442a0.gif#pic_center)
![解决OSError: [Errno 98] Address already in use问题](https://img-blog.csdnimg.cn/445ad01aebb2478bb010a8093049ce42.png)

![报错OSError: [Errno 22] Invalid argument 的一种解决方法](https://img-blog.csdnimg.cn/412bf4cd5a204d69a52c7900d271e640.png)
![OSError[Errno 48]:Address already in use解决方法](https://img-blog.csdnimg.cn/20191227152238731.png)


![出现Python OSError: [Errno 22] Invalid argument的来龙去脉](https://img-blog.csdnimg.cn/d4cba45bc5cb463cbd7cd75ca32edee4.bmp?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5r-A5Yqo55qE5YWU5a2Q,size_20,color_FFFFFF,t_70,g_se,x_16#pic_center)
![彻底解决 OSError: [WinError 127] 找不到指定的程序。](https://img-blog.csdnimg.cn/20210916145000755.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAa2sxMjNr,size_20,color_FFFFFF,t_70,g_se,x_16)
