作者:翟天保Steven
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处
场景需求
最近有客户提出,想要将解包裹图像转化为有颜色的图像,具备更佳的视觉效果。解包裹图是一个float类型的灰度图像,里面的数值范围类似于从-10.25到20.56这种,客户想要最低的数值为蓝色,最高的数值为红色,中间的数值为绿色。
针对该需求,我们首先需要将灰度值图转化为0-255的8通道(uchar)灰度图,运用归一化函数可以实现,之后考虑到颜色和灰度的关系,比如最低的颜色为蓝色(0,0,255)对应灰度值0,最高的颜色为红色(255,0,0)对应灰度值255,只需要找出其变化的规律即可。
下方为具体实现函数和测试代码。
功能函数代码
/*** @brief GrayToColor 灰度图上色* @param phase 输入的灰色图像,通道为1* @return 上色后的图像*/
static cv::Mat GrayToColor(cv::Mat &phase)
{CV_Assert(phase.channels() == 1);cv::Mat temp, result, mask;// 将灰度图重新归一化至0-255cv::normalize(phase, temp, 255, 0, cv::NORM_MINMAX);temp.convertTo(temp, CV_8UC1);// 创建掩膜,目的是为了隔离nan值的干扰mask = cv::Mat::zeros(phase.size(), CV_8UC1);mask.setTo(255, phase == phase);// 初始化三通道颜色图cv::Mat color1, color2, color3;color1 = cv::Mat::zeros(temp.size(), temp.type());color2 = cv::Mat::zeros(temp.size(), temp.type());color3 = cv::Mat::zeros(temp.size(), temp.type());int row = phase.rows;int col = phase.cols;// 基于灰度图的灰度层级,给其上色,最底的灰度值0为蓝色(255,0,0),最高的灰度值255为红色(0,0,255),中间的灰度值127为绿色(0,255,0)// 不要惊讶蓝色为什么是(255,0,0),因为OpenCV中是BGR而不是RGBfor (int i = 0; i < row; ++i){uchar *c1 = color1.ptr<uchar>(i);uchar *c2 = color2.ptr<uchar>(i);uchar *c3 = color3.ptr<uchar>(i);uchar *r = temp.ptr<uchar>(i);uchar *m = mask.ptr<uchar>(i);for (int j = 0; j < col; ++j){if (m[j] == 255){if (r[j] > (3 * 255 / 4) && r[j] <= 255){c1[j] = 255;c2[j] = 4 * (255 - r[j]);c3[j] = 0;}else if (r[j] <= (3 * 255 / 4) && r[j] > (255 / 2)){c1[j] = 255 - 4 * (3 * 255 / 4 - r[j]);c2[j] = 255;c3[j] = 0;}else if (r[j] <= (255 / 2) && r[j] > (255 / 4)){c1[j] = 0;c2[j] = 255;c3[j] = 4 * (255 / 2 - r[j]);}else if (r[j] <= (255 / 4) && r[j] >= 0){c1[j] = 0;c2[j] = 255 - 4 * (255 / 4 - r[j]);c3[j] = 255;}else {c1[j] = 0;c2[j] = 0;c3[j] = 0;}}}}// 三通道合并,得到颜色图vector<cv::Mat> images;images.push_back(color3);images.push_back(color2);images.push_back(color1);cv::merge(images, result);return result;
}
C++测试代码
#include<iostream>
#include<opencv2/opencv.hpp>
#include<ctime>
using namespace std;
using namespace cv;
void UnitPolar(int squaresize, cv::Mat& mag,cv::Mat& ang);
void UnitCart(int squaresize, cv::Mat& x, cv::Mat& y);
cv::Mat GrayToColor(cv::Mat &phase);
int main(void)
{cv::Mat mag, ang,result,result3;UnitPolar(2001, mag, ang);mag.at<float>(10, 10) = nan("");clock_t start, end;start = clock();result= GrayToColor(mag);end = clock();double diff = end - start;cout << "time:" << diff/ CLOCKS_PER_SEC << endl;system("pause");return 0;
}
void UnitPolar(int squaresize, cv::Mat& mag,cv::Mat& ang) {cv::Mat x;cv::Mat y;UnitCart(squaresize, x, y); //产生指定范围内的指定数量点数,相邻数据跨度相同// OpenCV自带的转换有精度限制,导致结果有一定差异性//cv::cartToPolar(x, y, mag, ang, false); //坐标转换mag = cv::Mat(x.size(), x.type());ang = cv::Mat(x.size(), x.type());int row = mag.rows;int col = mag.cols;float *m, *a, *xx, *yy;for (int i = 0; i < row; ++i){m = mag.ptr<float>(i);a = ang.ptr<float>(i);xx = x.ptr<float>(i);yy = y.ptr<float>(i);for (int j = 0; j < col; ++j){m[j] = sqrt(xx[j] * xx[j] + yy[j] * yy[j]);a[j] = atan2(yy[j], xx[j]);}}
}void UnitCart(int squaresize, cv::Mat& x, cv::Mat& y) {CV_Assert(squaresize % 2 == 1);x.create(squaresize, squaresize, CV_32FC1);y.create(squaresize, squaresize, CV_32FC1);//设置边界x.col(0).setTo(-1.0);x.col(squaresize - 1).setTo(1.0f);y.row(0).setTo(1.0);y.row(squaresize - 1).setTo(-1.0f);float delta = 2.0f / (squaresize - 1.0f); //两个元素的间隔//计算其他位置的值for (int i = 1; i < squaresize - 1; ++i) {x.col(i) = -1.0f + i * delta;y.row(i) = 1.0f - i * delta;}
}/*** @brief GrayToColor 灰度图上色* @param phase 输入的灰色图像,通道为1* @return 上色后的图像*/
static cv::Mat GrayToColor(cv::Mat &phase)
{CV_Assert(phase.channels() == 1);cv::Mat temp, result, mask;// 将灰度图重新归一化至0-255cv::normalize(phase, temp, 255, 0, cv::NORM_MINMAX);temp.convertTo(temp, CV_8UC1);// 创建掩膜,目的是为了隔离nan值的干扰mask = cv::Mat::zeros(phase.size(), CV_8UC1);mask.setTo(255, phase == phase);// 初始化三通道颜色图cv::Mat color1, color2, color3;color1 = cv::Mat::zeros(temp.size(), temp.type());color2 = cv::Mat::zeros(temp.size(), temp.type());color3 = cv::Mat::zeros(temp.size(), temp.type());int row = phase.rows;int col = phase.cols;// 基于灰度图的灰度层级,给其上色,最底的灰度值0为蓝色(255,0,0),最高的灰度值255为红色(0,0,255),中间的灰度值127为绿色(0,255,0)// 不要惊讶蓝色为什么是(255,0,0),因为OpenCV中是BGR而不是RGBfor (int i = 0; i < row; ++i){uchar *c1 = color1.ptr<uchar>(i);uchar *c2 = color2.ptr<uchar>(i);uchar *c3 = color3.ptr<uchar>(i);uchar *r = temp.ptr<uchar>(i);uchar *m = mask.ptr<uchar>(i);for (int j = 0; j < col; ++j){if (m[j] == 255){if (r[j] > (3 * 255 / 4) && r[j] <= 255){c1[j] = 255;c2[j] = 4 * (255 - r[j]);c3[j] = 0;}else if (r[j] <= (3 * 255 / 4) && r[j] > (255 / 2)){c1[j] = 255 - 4 * (3 * 255 / 4 - r[j]);c2[j] = 255;c3[j] = 0;}else if (r[j] <= (255 / 2) && r[j] > (255 / 4)){c1[j] = 0;c2[j] = 255;c3[j] = 4 * (255 / 2 - r[j]);}else if (r[j] <= (255 / 4) && r[j] >= 0){c1[j] = 0;c2[j] = 255 - 4 * (255 / 4 - r[j]);c3[j] = 255;}else {c1[j] = 0;c2[j] = 0;c3[j] = 0;}}}}// 三通道合并,得到颜色图vector<cv::Mat> images;images.push_back(color3);images.push_back(color2);images.push_back(color1);cv::merge(images, result);return result;
}
测试效果


如上图所示,为了方便,我生成了一个2001*2001的图像矩阵,图1为灰度图,图2是经过颜色处理后的颜色图,满足了前面提到的需求。
如果函数有什么可以改进完善的地方,非常欢迎大家指出,一同进步何乐而不为呢~
如果文章帮助到你了,可以点个赞让我知道,我会很快乐~加油!