Hough transform(霍夫变换)

article/2025/9/29 6:55:40

主要内容:

1、Hough变换的算法思想

2、直线检测

3、圆、椭圆检测

4、程序实现

一、Hough变换简介

       Hough变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。

       霍夫变换于1962年由Paul Hough 首次提出[53],后于1972年由Richard Duda和Peter Hart推广使用[54],经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆。

1.1 直线检测

image

       设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。

       简而言之,Hough变换思想为:在原始图像坐标系下的一个点对应了参数坐标系中的一条直线,同样参数坐标系的一条直线对应了原始坐标系下的一个点,然后,原始坐标系下呈现直线的所有点,它们的斜率和截距是相同的,所以它们在参数坐标系下对应于同一个点。这样在将原始坐标系下的各个点投影到参数坐标系下之后,看参数坐标系下有没有聚集点,这样的聚集点就对应了原始坐标系下的直线。

       在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p---theta平面上的一条曲线上,其它的还是一样。

image   

上图(a)所示为原始的图像空间中一个点;(b)所示为直角坐标系当中为过同一四条直线;(c)所示为这四条直线在极坐标参数空间可以表示为四个点

      为了检测出直角坐标X-Y中由点所构成的直线,可以将极坐标a-p量化成许多小格。根据直角坐标中每个点的坐标(x,y),在a = 0-180°内以小格的步长计算各个p值,所得值落在某个小格内,便使该小格的累加记数器加1。当直角坐标中全部的点都变换后,对小格进行检验,计数值最大的小格,其(a,p)值对应于直角坐标中所求直线。

思路解析:

1)读取一幅带处理二值图像,最好背景为黑色;

2)获取图像空间的源像素数据;

3)通过量化霍夫参数空间为有限个值间隔等分或者累加格子,即p,theta;

4)霍夫变换算法开始,每个像素坐标点P(x, y)被转换到(r, theta)的曲线点上面,并累加到对应的格子数据点;

5)寻找最大霍夫值,设置阈值,反变换到图像空间;

实际应用例子:车道检测

image

1.2 已知半径的圆

       其实Hough变换可以检测任意的已知表达形式的曲线,关键是看其参数空间的选择,参数空间的选择可以根据它的表达形式而定。比如圆的表达形式为 ,所以当检测某一半径的圆的时候,可以选择与原图像空间同样的空间作为参数空间。那么圆图像空间中的一个圆对应了参数空间中的一个点,参数空间中的一个点对应了图像空间中的一个圆,圆图像空间中在同一个圆上的点,它们的参数相同即ab相同,那么它们在参数空间中的对应的圆就会过同一个点(ab),所以,将原图像空间中的所有点变换到参数空间后,根据参数空间中点的聚集程度就可以判断出图像空间中有没有近似于圆的图形。如果有的话,这个参数就是圆的参数。

1.3 未知半径的圆

       对于圆的半径未知的情况下,可以看作是有三个参数的圆的检测,中心和半径。这个时候原理仍然相同,只是参数空间的维数升高,计算量增大。图像空间中的任意一个点都对应了参数空间中的一簇圆曲线。 ,其实是一个圆锥型。参数空间中的任意一个点对应了图像空间中的一个圆。

1.4 椭圆

      椭圆有5个自由参数,所以它的参数空间是5维的,因此他的计算量非常大,所以提出了许多的改进算法。

二、程序实现

  对于处理一般图像,需要对图像进行边缘检测和二值化处理,Hough变换的输入是黑白二值图像。

  matlab:

  http://www.mathworks.cn/cn/help/images/ref/hough.html

  openCV:

  http://blog.csdn.net/ccxcau/article/details/7816588

三、总结

  图像空间中的在同一个圆,直线,椭圆上的点,每一个点都对应了参数空间中的一个图形,在图像空间中这些点都满足它们的方程这一个条件,所以这些点,每个投影后得到的图像都会经过这个参数空间中的点。也就是在参数空间中它们会相交于一点。所以,当参数空间中的这个相交点的越大的话,那么说明元图像空间中满足这个参数的图形越饱满。越象我们要检测的东西。

  Hough变换能够查找任意的曲线,只要你给定它的方程。Hough变换在检验已知形状的目标方面具有受曲线间断影响小和不受图形旋转的影响的优点,即使目标有稍许缺损或污染也能被正确识别。

四、参考文献:

http://blog.csdn.net/icerain_3321/article/details/1665280

http://blog.csdn.net/abcjennifer/article/details/7448513

http://blog.csdn.net/carson2005/article/details/6568414

http://blog.csdn.net/ccxcau/article/details/7816588

http://hi.baidu.com/tangsu2009/item/88475289bb40035a840fabda


http://chatgpt.dhexx.cn/article/HLpFR6Zo.shtml

相关文章

Hough变换

目录 一、Hough变换简介 二、Hough变换的数学理解 1.x-y变量空间至k-b参数空间的变换 2.x-y变量空间至-空间的变换 三、Hough变换应用于线检测(MATLAB实现) 1.检测步骤 2.使用MATLAB工具箱中的Hough变换函数进行边缘检测 一、Hough变换简介 霍夫变…

图像处理:Hough变换原理分析

目录 一、前言 二、直线函数的形式化表示 2.1 直线被方程表示 2.2 直线被图表表示 2.3 直线的表格表示 三、hough变换的提出 3.1 极坐标表示点和线 四、 hough变换的原理 4.1 极坐标的​编辑表格 4.2 用​编辑平面表示:过任意点P(x,y)做所有射线&#xff0…

Hough变换原理-直线检测

目录 一、简介 二、原理 三、Python代码实现 一、简介 Hough(霍夫)变换是图像处理中从图像中识别几何形状的基本方法之一。Hough变换是将图像坐标空间变换到参数空间,利用点与线的对偶性,将原始图像空间的给定的曲线&#xff08…

YUV444、YUV422、YUV420、YUV420P、YUV420SP、YV12、YU12、NV12、NV21

前言 各种YUV格式多如牛毛啊,刚开始学起来确实很费劲,网上搜索的文章讲的并不是很明白。 各种不同的YUV格式其实只是采样方式和存储方式不同,就这两点,不同的采样方式是为了实现节省内存,不同的存储方式暂时不了解有…

2023-02-24:请用go语言调用ffmpeg,解码mp4文件并保存为YUV420SP格式文件,采用YUV420P转YUV420SP的方式。

2023-02-24:请用go语言调用ffmpeg,解码mp4文件并保存为YUV420SP格式文件,采用YUV420P转YUV420SP的方式。 答案2023-02-24: 使用 github.com/moonfdd/ffmpeg-go 库。 解码后就是yuv420p,然后用SwsScale函数转换成yuv…

ffmpeg处理YUV422和YUV420P相互转换

YUV422空间大小计算 YUV422封包width*heightwidth/2*height*2YUYV Y分量width*heightYUYV U分量width/2*heightYUYV V分量width/2*height YUV420空间大小计算 YUV420封包width*heightwidth/2*height/2*2Y分量width*heightU分量width/2*height/2V分量width/2*height/2 extern &…

Android Camera2 YUV420_888 格式详解

Camera2 YUV420_888 官网文档介绍 Android PAI 对 YUV420_888的介绍 ,大致意思如下: 它是YCbCr的泛化格式,能够表示任何4:2:0的平面和半平面格式,每个分量用8 bits 表示。带有这种格式的图像使用3个独立的Buffer表示,每…

【音视频数据数据处理 2】【YUV篇】将YUV420P_I420数据旋转90°-180°-270°-镜像旋转

【音视频数据数据处理 2】【YUV篇】将YUV420P_I420数据旋转90 一、理论分析(以yuv420p_i420格式为例)二、顺时针旋转90 代码实现三、顺时针旋转180 代码实现四、旋转90-180-270-镜像旋转,完整代码实现五、运行结果 本文接着前文: …

YUV420->RGB888格式转换的CPP实现

git地址: GitHub - Evayangelion/EYUVConverter: A YUV converter implemented by cpp 上一次学习了YUV各种采样和存储方式的区别(YUV知识存档) 接下来一起学习一下RGB格式的知识和YUV到RGB的转换方式 RGB色彩模式的分类 RGB的分类相较YUV来说…

YUV444,YUV420P,YUV420SP,YUV422P,YUV422SP,NV12,NV21,NV16,NV61等格式区分与存储简介

一、基础知识: 概述 YUV是顏色編碼方式,常用於視頻及圖像處理中。 其中的YUV是三個分量。“Y”表示明亮度(Luminance或Luma),也就是灰度值。“U”和“V” 表示的是彩色信息,分別爲色度和濃度(C…

OpenGL渲染YUV420P

一 、YUV420P数据格式二 、GLFW渲染YUV420P2.1 定义顶点数据2.2 创建YUV三张纹理2.3上行YUV420数据2.4 渲染纹理2.5 着色器 三、代码地址以及存在的问题四 、解决存在的问题 一 、YUV420P数据格式 图片来源于谷歌 结合上图可以看出YUV420P的特点如下: ①无论在横向还…

详解 YUV 格式(I420/YUV420/NV12/NV12/YUV422)

转载自:划水型派大星 YUV (YCbCr)是一种像素格式,常见于视频编码与静态图像。与 RGB 格式(红-绿-蓝)相反,YUV 分别由一个称为 Y(相当于灰度)的“亮度”分量(…

ffmpeg学习笔记(2)-YUV420算法原理

ffmpeg学习笔记(2)——YUV420算法原理 一、YUV像素格式 YUV的组成格式如下图所示 Y:明亮度,即灰度值 U、V:颜色 YUV格式将亮度信息和色彩信息分离,没有色彩信息依然能够显示图像(没有色彩信息),很好的解…

音视频编解码: YUV存储格式中的YUV420P,YUV420SP,NV12, NV21理解(转)

概述 之前介绍了YUV码流的采样格式,下面分析下YUV码流的存储格式,YUV码流的存储格式与采样格式息息相关。总的来讲,YUV存储格式主要分为两种: planar 平面格式 指先连续存储所有像素点的 Y 分量,然后存储 U 分量&…

图像编码YUV420格式

目录 一、YUV简介 二、RGB 到 YUV 的转换 三、YUV采样 YUV 4:4:4 YUV 4:2:2 YUV 4:2:0 四、YUV 存储格式 基于 YUV 4:2:2 采样的格式 YUYV 格式 UYVY 格式 YUV 422P 格式 基于 YUV 4:2:0 采样的格式 YU12 和 YV12 格式 NV12 和 NV21 格式 一、YUV简介 YUV&#x…

YUV420数据格式详解

YUV简介 YUV格式有两大类:planar和packed。 对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。 对于packed的YUV格式,每个像素点的Y,U,V是连续交叉存储的。 YUV分为三个分…

python 生产者消费者模式

生产者消费者模式概述 在并发编程中使用生产者和消费者模式能够解决大不多的并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。 为什么使用生产者消费者模式 在线程世界里,生产者就是生产数据的线程,消费者就是…

生产者-消费者模式

概述 生产者-消费者模式在系统交互方面,有几个特点: 1、系统解耦 2、解决并发问题 3、不需要关心对方系统何时处理数据,处理结果如何 下面用几个简单例子逐步说明。 简单例子 假设有两个系统,A系统和B系统,B系统需要依赖A系统产生的数据,也就是说,A系统产生数据后,必须把数…

生产者消费者模式及简单的运用场景

先考虑一个问题:服务端接受多个客户端提交的视频文件进行转码的操作,应该怎么设计? 由于转码比较花费时间,所以我们排除同步的想法。而转码需要用到的外部软件(exe文件),不能同时被多个线程用到…

Java多线程系列—生产者消费者模式的多种实现(04)

生产者消费者模式 我们先来看看什么是生产者消费者模式,生产者消费者模式是程序设计中非常常见的一种设计模式,被广泛运用在解耦、消息队列等场景。 在现实世界中,我们把生产商品的一方称为生产者,把消费商品的一方称为消费者,有时生产者的生产速度特别快,但消费者的消…