机器学习过拟合与欠拟合!

article/2025/4/22 12:05:21

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

作者:胡联粤、张桐,Datawhale面经小组

Q1

如何理解高方差与低偏差?

模型的预测误差可以分解为三个部分: 偏差(bias), 方差(variance) 和噪声(noise).

偏差

偏差度量了模型的期望预测与真实结果的偏离程度, 即刻画了学习算法本身的拟合能力。偏差则表现为在特定分布上的适应能力,偏差越大越偏离真实值。

方差

方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即刻画了数据扰动所造成的影响。方差越大,说明数据分布越分散。

噪声

噪声表达了在当前任务上任何模型所能达到的期望泛化误差的下界, 即刻画了学习问题本身的难度 。

下图为偏差和方差示意图

83e45c0611f3697eb8d475deff8deb41.png

泛化误差、偏差、方差和模型复杂度的关系(图片来源百面机器学习)

67b85a2032efabc75b94f32fbb266f08.png

参考资料:https://blog.csdn.net/simple_the_best/article/details/71167786

Q2

什么是过拟合和欠拟合,为什么会出现这个现象?

过拟合指的是在训练数据集上表现良好,而在未知数据上表现差。如图所示:

4493b495d2603ffe6f2691f52f873e3d.png

欠拟合指的是模型没有很好地学习到数据特征,不能够很好地拟合数据,在训练数据和未知数据上表现都很差。

过拟合的原因在于:

  • 参数太多,模型复杂度过高;

  • 建模样本选取有误,导致选取的样本数据不足以代表预定的分类规则;

  • 样本噪音干扰过大,使得机器将部分噪音认为是特征从而扰乱了预设的分类规则;

  • 假设的模型无法合理存在,或者说是假设成立的条件实际并不成立。

欠拟合的原因在于:

  • 特征量过少;

  • 模型复杂度过低。

Q3

怎么解决欠拟合?

  • 增加新特征,可以考虑加入进特征组合、高次特征,来增大假设空间;

  • 添加多项式特征,这个在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强;

  • 减少正则化参数,正则化的目的是用来防止过拟合的,但是模型出现了欠拟合,则需要减少正则化参数;

  • 使用非线性模型,比如核SVM 、决策树、深度学习等模型;

  • 调整模型的容量(capacity),通俗地,模型的容量是指其拟合各种函数的能力;

  • 容量低的模型可能很难拟合训练集。

Q4

怎么解决过拟合?(重点)

  • 获取和使用更多的数据(数据集增强)——解决过拟合的根本性方法

  • 特征降维:人工选择保留特征的方法对特征进行降维

  • 加入正则化,控制模型的复杂度

  • Dropout

  • Early stopping

  • 交叉验证 增加噪声

Q5

为什么参数越小代表模型越简单?

因为参数的稀疏,在一定程度上实现了特征的选择。

越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。因此参数越少代表模型越简单。

Q6

为什么L1比L2更容易获得稀疏解?(重点)

69e65a130a8eb57b33327c72d80a6ac0.png

423dc85a48ee9a53c08d3689a946844d.png

37505eea619774b14f8113901480327d.png

参考链接:https://www.zhihu.com/question/37096933/answer/475278057

Q7

Dropout为什么有助于过拟合?(重点)

1. 取平均的作用

先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。

这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

2. 减少神经元之间复杂的共适应关系

因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。

换句话说,假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

3. Dropout类似于性别在生物进化中的角色

物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。

参考链接:https://zhuanlan.zhihu.com/p/38200980

Q8

Dropout在训练和测试时都需要吗?

Dropout在训练时采用,是为了减少神经元对部分上层神经元的依赖,类似将多个不同网络结构的模型集成起来,减少过拟合的风险。而在测试时,应该用整个训练好的模型,因此不需要dropout。

Q9

Dropout如何平衡训练和测试时的差异呢?

Dropout 在训练时以一定的概率使神经元失活,实际上就是让对应神经元的输出为0。假设失活概率为 p ,就是这一层中的每个神经元都有p的概率失活。

例如在三层网络结构中,如果失活概率为0.5,则平均每一次训练有3个神经元失活,所以输出层每个神经元只有3个输入,而实际测试时是不会有dropout的,输出层每个神经元都有6个输入。

因此在训练时还要对第二层的输出数据除以(1-p)之后再传给输出层神经元,作为神经元失活的补偿,以使得在训练时和测试时每一层输入有大致相同的期望。

Q10

BN和Dropout共同使用时会出现的问题是什么?

BN和Dropout单独使用都能减少过拟合并加速训练速度,但如果一起使用的话并不会产生1+1>2的效果,相反可能会得到比单独使用更差的效果。

参考链接:https://www.zhihu.com/tardis/sogou/art/61725100

Q11

L1 和 L2 正则先验分别服从什么分布?

先验就是优化的起跑线, 有先验的好处就是可以在较小的数据集中有良好的泛化性能,当然这是在先验分布是接近真实分布的情况下得到的了,从信息论的角度看,向系统加入了正确先验这个信息,肯定会提高系统的性能。

L1 正则先验分布是 Laplace 分布,L2 正则先验分布是 Gaussian 分布。

Laplace 分布公式为:

Gaussian 分布公式为:

对参数引入高斯正态先验分布相当于L2正则化:

f56ca9388ab4dc95f75587431ec13ffb.png
img

对参数引入拉普拉斯先验等价于 L1正则化:

c789c86d73e58fd30134de1a8c71e14a.png
img

从上面两图可以看出, L2先验趋向零周围, L1先验趋向零本身。

参考链接:https://blog.csdn.net/akenseren/article/details/80427471

本文来自Datawhale面经项目开源地址:

https://github.com/datawhalechina/Daily-interview

长按关注Datawhale,更多开源内容一起学习成长↓

e7d2dc0418f2924eb324d83f07785ecd.png

整理不易,三连


http://chatgpt.dhexx.cn/article/FDJMAt0u.shtml

相关文章

机器学习:过拟合与欠拟合问题

本文首发于 AI柠檬博客,原文链接:机器学习:过拟合与欠拟合问题 | AI柠檬 过拟合(overfitting)与欠拟合(underfitting)是统计学中的一组现象。过拟合是在统计模型中,由于使用的参数过…

机器学习知识总结 —— 6. 什么是过拟合和欠拟合

文章目录 过拟合欠拟合泛化能力避免过拟合的一般方法从数据集上规避从训练模型上规避从训练过程上规避 作为从「统计学(Statistics)」跟「计算机科学(Computer Science)」交叉而诞生的新学科「机器学习(Machine Learni…

VGG16网络结构要点

学习BCNN的过程时遇到,VGG16的网络结构如下图示意: 13个卷积层(Convolutional Layer),分别用conv3-XXX表示3个全连接层(Fully connected Layer),分别用FC-XXXX表示5个池化层(Pool …

VGG-16网络结构解析

VGG,也叫做VGG-16网络。这个网络结构很有意思,相必实现这个网络的作者是有点强迫症,不然整个网络为什么能够如此的协调一致。基本上每一次的内容都大同小异,2层或3层卷积层,激活一下,池化一下,就…

VGGNet网络结构

深度神经网络一般由卷积部分和全连接部分构成。卷积部分一般包含卷积(可以有多个不同尺寸的核级联组成)、池化、Dropout等,其中Dropout层必须放在池化之后。全连接部分一般最多包含2到3个全连接,最后通过Softmax得到分类结果&…

VggNet网络结构详解

VggNet网络结构详解 #图像识别网络结构详解 一、概述 VGG在2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出,斩获该年ImageNet竞赛中 Localization Task (定位任务) 第一名 和 Classification Task (分类任务) 第二名。 二、网络详解 VGG16相比Al…

VGG11、VGG13、VGG16、VGG19网络结构图

VGG11、VGG13、VGG16、VGG19网络结构图 前言 前言 VGG网络采用重复堆叠的小卷积核替代大卷积核,在保证具有相同感受野的条件下,提升了网络的深度,从而提升网络特征提取的能力。 可以把VGG网络看成是数个vgg_block的堆叠,每个vgg_…

VGG网络结构详解与模型的搭建

首先贴出三个链接: 1. VGG网络结构详解视频 2. 使用pytorch搭建VGG并训练 3. 使用tensorflow搭建VGG并训练 VGG网络是在2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出,斩获该年ImageNet竞赛中 Localization Task (定位任务) 第一名 和…

【深度学习】VGG16网络结构复现 | pytorch |

文章目录 前言一、VGG16介绍二、VGG16网络复现——pytorch 前言 这篇文章按道理来说应该是很简单的,但是因为一个很小的bug,让我难受了一晚上,直到现在我也没找出原因。后面我会提到这个bug。 今天这篇文章主要用来手动搭建vgg16这个网路&am…

经典卷积神经网络---VGG16网络

VGG16网络结构及代码 下图为VGG网络结构图,最常用的就是表中的D结构,16层结构(13层卷积3层全连接层),卷积的stride为1,padding为1,maxpool的大小为2,stride为2(池化只改…

VGG16网络结构复现(Pytorch版)

VGG有6种子模型,分别是A、A-LRN、B、C、D、E,我们常看到的基本是D、E这两种模型,即VGG16,VGG19 为了方便阅读,并没有加上激活函数层 from torch import nn import torch from torchsummary import summaryclass VGG…

手动搭建的VGG16网络结构训练数据和使用ResNet50微调(迁移学习)训练数据对比(图像预测+前端页面显示)

文章目录 1.VGG16训练结果:2.微调ResNet50之后的训练结果:3.结果分析:4.实验效果:(1)VGG16模型预测的结果:(2)在ResNet50微调之后预测的效果: 5.相关代码和知…

卷积神经网络——vgg16网络及其python实现

1、介绍 VGG-16网络包括13个卷积层和3个全连接层,网络结构较LeNet-5等网络变得十分复杂,但同时也有不错的效果。VGG16有强大的拟合能力在当时取得了非常的效果,但同时VGG也有部分不足:1、巨大参数量导致训练时间过长&#xf…

VGG16系列III: 网络模型结构

目录 Part I: CNN的基础构件 一张图片如何作为输入? 什么是卷积 什么是Padding 什么是池化(pooling) 什么是Flatten 什么是全连接层 什么是Dropout 什么是激活函数 VGG16的整体架构图 Part II: VGG 网络架构 典型VGG网络结构 VGG 网络参数数量计算: P…

VGG网络结构(一)

刚开始接触深度学习、卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络: 本文思路&#xff1a…

VGG 网络结构

从图中可以看出VGG结构由5层卷积层、3层全连接层、softmax输出层构成,层与层之间使用max-pooling(最大池化)分开,所有隐层的激活单元都采用ReLU函数。VGG最大的贡献就是证明了卷积神经网络的深度增加和小卷积核的使用对网络的最终…

PyTorch之VGG16网络结构详解以及源码解读

论文:Very Deep Convolutional Networks for Large-Scale Image Recognition 简单介绍 意义: 证明了增加小卷积核的个数以及网络深度可以提高分类结果的正确率。 预处理: 各通道减去RGB在训练集上的均值。 特点: 1)使用…

VGG-16网络结构

一、VGG-16网络框架介绍 VGGNet是牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的深度卷积神经网络。 VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠33的小型卷积核和22的最大池化层…

[VGG16]——网络结构介绍及搭建(PyTorch)

一、VGG16的结构层次 VGG16总共有16层,13个卷积层和3个全连接层,第一次经过64个卷积核的两次卷积后,采用一次pooling,第二次经过两次128个卷积核卷积后,采用pooling;再经过3次256个卷积核卷积后。采用pooli…

VGG预训练模型网络结构详解——以VGG16为例

VGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,VGG 在Top-5中取得了92…