Stream

article/2025/10/10 0:12:57

Java8 的 Stream 流,加上 Lambda 表达式,可以让代码变短变美,还是变短变丑?

距离Java 8发布已经过去了7、8年的时间,Java 19也发布了。Java 8中关于函数式编程和新增的Stream流API至今饱受“争议”。

如果你不曾使用Stream流,那么当你见到Stream操作时一定对它发出过鄙夷的声音,并在心里说出“这都写的什么玩意儿”。

如果你热衷于使用Stream流,那么你一定被其他人说过它可读性不高,甚至在codereview时被要求改用for循环操作,更甚至被写入公司不规范编码中的案例。

这篇文章将告诉你,不要再简单地认为Stream可读性不高了!

在这里插入图片描述

先贴上几个案例,水平高超的同学可以挑战一下:

从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。统计员工的最高薪资、平均薪资、薪资之和。将员工按薪资从高到低排序,同样薪资者年龄小者在前。将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。

用传统的迭代处理也不是很难,但代码就显得冗余了,跟Stream相比高下立判。Java 8 是一个非常成功的版本,这个版本新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

那么什么是Stream?

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

中间操作,每次返回一个新的流,可以有多个。

终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

另外,Stream有几个特性:

stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。

stream不会改变数据源,通常情况下会产生一个新的集合或一个值。

stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

Stream可以通过集合数组创建。

通过 java.util.Collection.stream() 方法用集合创建流


List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();使用java.util.Arrays.stream(T[] array)方法用数组创建流int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);使用Stream的静态方法:of()iterate()generate()Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);输出结果:0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652

stream和parallelStream的简单区分:stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:

在这里插入图片描述

如果流中的数据量足够大,并行流可以加快处速度。除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

在使用stream之前,先理解一个概念:Optional 。

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。更详细说明请见:菜鸟教程Java 8 Optional类

接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。

案例使用的员工类

这是后面案例中使用的员工类:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));class Person {private String name; // 姓名private int salary; // 薪资private int age; // 年龄private String sex; //性别private String area; // 地区// 构造方法public Person(String name, int salary, int age,String sex,String area) {this.name = name;this.salary = salary;this.age = age;this.sex = sex;this.area = area;}// 省略了get和set,请自行添加}

3.1 遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

在这里插入图片描述

// import已省略,请自行添加,后面代码亦是public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);// 遍历输出符合条件的元素list.stream().filter(x -> x > 6).forEach(System.out::println);// 匹配第一个Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();// 匹配任意(适用于并行流)Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();// 是否包含符合特定条件的元素boolean anyMatch = list.stream().anyMatch(x -> x < 6);System.out.println("匹配第一个值:" + findFirst.get());System.out.println("匹配任意一个值:" + findAny.get());System.out.println("是否存在大于6的值:" + anyMatch);}
}

3.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

在这里插入图片描述

案例一:筛选出Integer集合中大于7的元素,并打印出来

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
Stream stream = list.stream();
stream.filter(x -> x > 7).forEach(System.out::println);
}
}

预期结果:

8 9

案例二:筛选员工中工资高于8000的人,并形成新的集合。形成新集合依赖collect(收集),后文有详细介绍。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList());
System.out.print("高于8000的员工姓名:" + fiterList);

}
}

运行结果:

高于8000的员工姓名:[Tom, Anni, Owen]

3.3 聚合(max/min/count)

max、min、count这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

在这里插入图片描述

案例一:获取String集合中最长的元素。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“adnm”, “admmt”, “pot”, “xbangd”, “weoujgsd”);

Optional<String> max = list.stream().max(Comparator.comparing(String::length));
System.out.println("最长的字符串:" + max.get());

}
}

输出结果:

最长的字符串:weoujgsd

案例二:获取Integer集合中的最大值。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 9, 4, 11, 6);

// 自然排序
Optional<Integer> max = list.stream().max(Integer::compareTo);
// 自定义排序
Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {return o1.compareTo(o2);}
});
System.out.println("自然排序的最大值:" + max.get());
System.out.println("自定义排序的最大值:" + max2.get());

}
}

输出结果:

自然排序的最大值:11
自定义排序的最大值:11

案例三:获取员工工资最高的人。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
System.out.println("员工工资最大值:" + max.get().getSalary());

}
}

输出结果:

员工工资最大值:9500
案例四:计算Integer集合中大于6的元素的个数。

import java.util.Arrays;
import java.util.List;

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

long count = list.stream().filter(x -> x > 6).count();
System.out.println("list中大于6的元素个数:" + count);

}
}

输出结果:

list中大于6的元素个数:4

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map和flatMap:

map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。

flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

在这里插入图片描述

在这里插入图片描述

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {
public static void main(String[] args) {
String[] strArr = { “abcd”, “bcdd”, “defde”, “fTr” };
List strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());System.out.println("每个元素大写:" + strList);
System.out.println("每个元素+3:" + intListNew);

}
}

输出结果:

每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14]

案例二:将员工的薪资全部增加1000。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

// 不改变原来员工集合的方式
List<Person> personListNew = personList.stream().map(person -> {Person personNew = new Person(person.getName(), 0, 0, null, null);personNew.setSalary(person.getSalary() + 10000);return personNew;
}).collect(Collectors.toList());
System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());// 改变原来员工集合的方式
List<Person> personListNew2 = personList.stream().map(person -> {person.setSalary(person.getSalary() + 10000);return person;
}).collect(Collectors.toList());
System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());

}
}

输出结果:

一次改动前:Tom–>8900
一次改动后:Tom–>18900
二次改动前:Tom–>18900
二次改动后:Tom–>18900

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(“m,k,l,a”, “1,3,5,7”);
List listNew = list.stream().flatMap(s -> {
// 将每个元素转换成一个stream
String[] split = s.split(“,”);
Stream s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());

System.out.println("处理前的集合:" + list);
System.out.println("处理后的集合:" + listNew);

}
}

输出结果:

处理前的集合:[m-k-l-a, 1-3-5]
处理后的集合:[m, k, l, a, 1, 3, 5]

3.5 归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

在这里插入图片描述

案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional sum = list.stream().reduce((x, y) -> x + y);
// 求和方式2
Optional sum2 = list.stream().reduce(Integer::sum);
// 求和方式3
Integer sum3 = list.stream().reduce(0, Integer::sum);

// 求乘积
Optional<Integer> product = list.stream().reduce((x, y) -> x * y);// 求最大值方式1
Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
// 求最大值写法2
Integer max2 = list.stream().reduce(1, Integer::max);System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
System.out.println("list求积:" + product.get());
System.out.println("list求和:" + max.get() + "," + max2);

}
}

输出结果:

list求和:29,29,29
list求积:2112
list求和:11,11

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, 24, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, 25, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, 26, “female”, “New York”));

// 求工资之和方式1:
Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
// 求工资之和方式2:
Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),(sum1, sum2) -> sum1 + sum2);
// 求工资之和方式3:
Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);// 求最高工资方式1:
Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),Integer::max);
// 求最高工资方式2:
Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),(max1, max2) -> max1 > max2 ? max1 : max2);System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
System.out.println("最高工资:" + maxSalary + "," + maxSalary2);

}
}

输出结果:

工资之和:49300,49300,49300
最高工资:9500,9500

3.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList、toSet和toMap比较常用,另外还有toCollection、toConcurrentMap等复杂一些的用法。

下面用一个案例演示toList、toSet和toMap:

public class StreamTest {
public static void main(String[] args) {
List list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000).collect(Collectors.toMap(Person::getName, p -> p));
System.out.println("toList:" + listNew);
System.out.println("toSet:" + set);
System.out.println("toMap:" + map);

}
}

运行结果:

toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

3.6.2 统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

计数:count

平均值:averagingInt、averagingLong、averagingDouble

最值:maxBy、minBy

求和:summingInt、summingLong、summingDouble

统计以上所有:summarizingInt、summarizingLong、summarizingDouble

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));

// 求总数
Long count = personList.stream().collect(Collectors.counting());
// 求平均工资
Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
// 求最高工资
Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
// 求工资之和
Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
// 一次性统计所有信息
DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));System.out.println("员工总数:" + count);
System.out.println("员工平均工资:" + average);
System.out.println("员工工资总和:" + sum);
System.out.println("员工工资所有统计:" + collect);

}
}

运行结果:

员工总数:3
员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

3.6.3 分组(partitioningBy/groupingBy)

分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。

分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

在这里插入图片描述

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, “female”, “Washington”));
personList.add(new Person(“Anni”, 8200, “female”, “New York”));
personList.add(new Person(“Owen”, 9500, “male”, “New York”));
personList.add(new Person(“Alisa”, 7900, “female”, “New York”));

// 将员工按薪资是否高于8000分组Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));// 将员工按性别分组Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));// 将员工先按性别分组,再按地区分组Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));System.out.println("员工按薪资是否大于8000分组情况:" + part);System.out.println("员工按性别分组情况:" + group);System.out.println("员工按性别、地区:" + group2);

}
}

输出结果:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));

String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);

}
}

运行结果:

所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C

3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();
personList.add(new Person(“Tom”, 8900, 23, “male”, “New York”));
personList.add(new Person(“Jack”, 7000, 25, “male”, “Washington”));
personList.add(new Person(“Lily”, 7800, 21, “female”, “Washington”));

// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
System.out.println("员工扣税薪资总和:" + sum);// stream的reduce
Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
System.out.println("员工薪资总和:" + sum2.get());

}
}

运行结果:

员工扣税薪资总和:8700
员工薪资总和:23700

3.7 排序(sorted)

sorted,中间操作。有两种排序:

sorted():自然排序,流中元素需实现Comparable接口

sorted(Comparator com):Comparator排序器自定义排序

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {
public static void main(String[] args) {
List personList = new ArrayList();

personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName).collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()).map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream().sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {if (p1.getSalary() == p2.getSalary()) {return p2.getAge() - p1.getAge();} else {return p2.getSalary() - p1.getSalary();}
}).map(Person::getName).collect(Collectors.toList());System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);

}
}

运行结果:

按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]

按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]

先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]

先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

public class StreamTest {
public static void main(String[] args) {
String[] arr1 = { “a”, “b”, “c”, “d” };
String[] arr2 = { “d”, “e”, “f”, “g” };

Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
// concat:合并两个流 distinct:去重
List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
// limit:限制从流中获得前n个数据
List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
// skip:跳过前n个数据
List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());System.out.println("流合并:" + newList);
System.out.println("limit:" + collect);
System.out.println("skip:" + collect2);

}
}

运行结果:

流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]

好,以上就是全部内容,能坚持看到这里,你一定很有收获。


http://chatgpt.dhexx.cn/article/DgNlIf03.shtml

相关文章

istream_iterator 和 ostream_iterator

C primer代码学习 通过istream_iterator 绑定标准输入 cin 通过ostream_iterator 绑定标准输出 cout #include <iterator> using std::istream_iterator; using std::ostream_iterator;#include<vector> using std::vector;#include<iostream> using std::c…

C++重载istream和ostream

对于一般的运算符重载&#xff0c;可以重载为类的成员函数&#xff0c;这是因为操作符的第一个元素一定是本类的对象&#xff08;this&#xff09; 例如 #include<iostream> using namespace std;class book { public:book (int n):bookNo(n) {}int getBookNo () {retu…

【C++初阶】ostream、operater<<、operator<<(ostream _cout, const Date d)、bool引导的结构体内嵌比较函数解析

对C重载、判断部分的知识进行梳理 目录 一、bool operator>(const Date& d) const【bool引导的结构体内嵌比较函数】 1.代码整体含义 2.代码两个const的含义 二、friend ostream& operator<<(ostream& _cout, const Date& d) 1. 相关基础概念 …

C++ iostream、ostream、istream等标准库都是什么?看完这篇就知道了

目录 iostream 库组成基本类模板类模板实例标准对象类型操纵符 源码 ostream 库istream 库fstream 库ios 库 我们在写C代码的时候&#xff0c;总会用到 iostream 库&#xff0c;这是C的标准库&#xff0c;几乎每个程序都会用到它&#xff08;有一些人则会用 cstdio &#xff…

C++之 ostream详细用法

概述 在 C中&#xff0c;ostream表示输出流&#xff0c;英文”output stream“的简称。在 C中常见的输出流对象就是标准输出流cout&#xff0c;很少自定义ostream的对象&#xff0c;更多的是直接使用cout。那么 ostream 有什么用呢&#xff0c;来看一个场景&#xff1a; clas…

Simple_SSTI_1

Simple_SSTI_1&#xff1a; 打开题目 查看一下网页源代码 flag在secret_key下 以get方式传递参数flag{{config.SECRET_KEY}}即得到flag。 也就是114.67.246.176.12930/?flag{{config.SECRET_KEY}} SECRET_KEY是config配置里面的一个值 告自己&#xff1a;要先截图再提交flag…

SSTI(模板注入) 解析 和 ctf 做法

基础知识补充&#xff1a; __class__ 返回类型所属的对象__mro__ 返回一个包含对象所继承的基类元组&#xff0c;方法在解析时按照元组的顺序解析。__base__ 返回该对象所继承的基类// __base__和__mro__都是用来寻找基类的__subclasses__ 每个新类都保留了子类的引用&#xff…

SSTI注入————php的SSTI

SSTI 就是服务器端模板注入&#xff08;Server-Side Template Injection&#xff09; ​ 当前使用的一些框架&#xff0c;比如python的flask&#xff0c;php的tp&#xff0c;java的spring等一般都采用成熟的的MVC的模式&#xff0c;用户的输入先进入Controller控制器&#xff0…

SSTI

模板注入在py2和py3中有些不同&#xff0c;但是没有本质上的区别。 模板注入的流程&#xff1a;找到父类<type ‘object’>–>寻找子类–>找关于命令执行或者文件操作的模块。 几个魔术方法&#xff1a; class 返回类型所属的对象 mro 返回一个包含对象所继承的基类…

SSTI模板注入及绕过姿势(基于Python-Jinja2)

前言&#xff1a;​SSTI&#xff08;服务端模板注入&#xff09;&#xff0c;已然不再是一个新话题&#xff0c;近年来的CTF中还是也经常能遇到的&#xff0c;比如护网杯的easy_tonado、TWCTF的Shrine&#xff0c;19年的SCTF也出了Ruby ERB SSTI的考点&#xff1b;本篇对这部分…

SSTI (服务器模板注入)

先来一波flask ssti漏洞的代码。 #python3 #Flask version:0.12.2 #Jinja2: 2.10 from flask import Flask, request from jinja2 import Template app Flask(__name__) app.route("/") def index():name request.args.get(name, guest)t Template("Hello &…

初步认识SSTI

SSTI简介 SSTI&#xff0c;即服务端模板注入&#xff0c;起因是服务端接收了用户的输入&#xff0c;将其作为 Web 应用模板内容的一部分&#xff0c;在进行目标编译渲染的过程中&#xff0c;执行了用户插入的恶意内容&#xff0c;从而导致各种各样的问题。 Python SSTI(flask…

ISCC SSTI

先找参数吧&#xff0c;通过信息搜集&#xff0c;参数是xiaodouni 就是小豆泥的英文&#xff0c;这个是暹罗猫的一个名字吧 然后直接放两个payload的吧 看不懂的可以看一下我以前的文章CTFshow ssti里面讲了思路&#xff0c;这里就不再解释了。 {%set pp(dict(popa))|join%} …

SSTI 学习笔记

PHP SSTI(Twig) 学习文章 进入环境&#xff0c;左上角有flag,hint 都检查看看 flag页面显示ip&#xff0c;hint页面源代码有提示 考虑XFF头或者referer头 测试一下 注&#xff1a;这里不用加上“&#xff1b;” 出来了 python flask ssti 学习文章 原理&#xff1a;因为对输…

浅学Go下的ssti

前言 作为强类型的静态语言&#xff0c;golang的安全属性从编译过程就能够避免大多数安全问题&#xff0c;一般来说也唯有依赖库和开发者自己所编写的操作漏洞&#xff0c;才有可能形成漏洞利用点&#xff0c;在本文&#xff0c;主要学习探讨一下golang的一些ssti模板注入问题…

SSTI——java里的ssti

1.Velocity 2.FreeMarker 因为从来没接触过java语言 所以对这些也是基本上一窍不通 这里只简单的提及 不做具体介绍 会找一下题来做 但是没有找到有关java ssti的题目 confusion1 看一下描述 打开题目 没发现什么东西 但是 login register页面显示访问不成功 查看源代码找到…

详解SSTI模板注入

详解SSTI模板注入 SSTI简介常见的模板引擎PHPJAVAPYTHONRUBYGOLANG SSTI产生的原因常用检测工具 TplmapFlask/Jinja模板引擎的相关绕过Flask简介demo漏洞代码基础知识沙盒逃逸Python的内建函数名称空间类继承 寻找Python-SSTI攻击载荷的过程攻击载荷过程常用的目标函数常见的中…

web安全-SSTI模板注入漏洞

一.初识SSTI 1.什么是SSTI注入&#xff1f; SSTI模板注入(Server-Side Template Injection)&#xff0c;通过与服务端模板的输入输出交互&#xff0c;在过滤不严格的情况下&#xff0c;构造恶意输入数据&#xff0c;从而达到读取文件或者getshell的目的。 2.SSTI漏洞成因 ​…

BugKu:Simple_SSTI(SSTI模板注入)

目录 1.Simple_SSTI_1 2.Simple_SSTI_2 1.Simple_SSTI_1 点击链接进入&#xff0c;题目说&#xff1a; You need pass in a parameter named flag。(你需要传入一个名为flag的参数)然后我们可以直接f12查看&#xff0c;也可以右击页面--->“检查” 如图所示&#xff0c;我…

SSTI模板注入绕过(进阶篇)

文章目录 语法变量过滤器总结获取内置方法 以chr为例字符串构造获取键值或下标获取属性 下面的内容均以jinja2为例&#xff0c;根据官方文档来探寻绕过方法 文档链接 默认大家都已经可以利用没有任何过滤的模板注入 语法 官方文档对于模板的语法介绍如下 {% ... %} for State…