Type-C接口简单介绍-面向单片机应用

article/2025/10/1 10:47:14

Type-C接口简单介绍-面向单片机应用

1、绪论

用单片机做一些东西时,Type-C接口逐渐替代了MicroUSB接口。但不像MicroUSB那样只有5V、GND、D+、D-、ID五个接口,Type-C接口有24个引脚,比较复杂。大多时候我们用TypeC也用不到USB3.0协议,还仅仅是像MicroUSB那样的功能,因此不需很详细的了解,只需要简单了解TypeC各引脚功能即可。本文尽量简单的介绍TypeC。

2、TypeC硬件接口介绍

2.1、公母头图片及特点

TypeC分为公头和母头。一般TypeC充电线是公头,手机里面的TypeC接口是母头,公头可以插进母头里面。母头中间一排有立着的板子上分布着接口,公头接口分布在两侧。
母头图片如下:
在这里插入图片描述
上图:TypeC母头接口图
在这里插入图片描述
上图:TypeC母头实物图

公头图片如下:
在这里插入图片描述
上图:TypeC公头接口图
在这里插入图片描述
上图:TypeC公头实物图

通过上图,我们发现以下特点:

  • 在实物上面,区别是母头中间带一个立起的小板子,接线口位于该小板子的两侧。而公头不带小板子,接线口位于外壁内侧。
  • 公头和母头均有两侧,标号A侧、B侧,且两侧都有焊盘接口,每侧12个,一侧用A1-A12表示,另一侧用B1-B12表示。
  • 公头的B6和B7引脚没有焊盘接口。

公头和母头之间连接时有正插和反插两种情况。

  • 正插: 母头A侧公头A侧 贴合:
    此时母头A1-A12依次和公头A1-A12贴合
  • 反插: 母头A侧公头B侧 贴合:
    此时母头A1-A12依次和公头B1-B12贴合

2.2、各引脚功能

如下表:
在这里插入图片描述
各引脚功能分类说明如下:

  • A1、12、B1、B12: 接地
  • A4、A9、B4、B9: 接电源正极,一般最高为20V,最大电流5A。
  • A2、A3、A10、A11、B2、B3、B10、B11: USB3.0的通信信号。USB3.0兼容USB2.0,除了2.0的D+、D-一路差分信号接口外,还增加了两路差分信号,分别为SSTXp1、SSTXn1一组、SSRXp2、SSRXn2一组,两组超速差分信号连接可以使得USB3.0是全双工通信,而USB2.0仅有一组差分信号则只能是半双工通信。当插口正接时,母头的超速差分信号1接共同的超速差分信号1,反接时,母头的超速差分信号1接共同的超速差分信号2,所以USB3.0全双工工作时需要判断是正插还是反插,进而通信双方判断使用哪组差分信号收、哪组发。
  • A6、A7: USB2.0的差分通信信号。
  • A6、A7: cc1和cc2,为Configuration Channel(配置通道)的缩写。可以用来检测公头和母头的插入方向。当二者A边对A边插入时,公头cc1接母头cc1,反之则公头cc1接母头cc2。其次还可用作很多作用,探测连接、区分主从设备,后面会详细介绍,
    也可参考:ttps://blog.csdn.net/mike8825/article/details/88377090
  • A8、B8: sbu1和sbu2,为Side Band Use(边带使用),实现辅助功能,适合传输非USB信号如音频信号。

2.3、Typec数据角色分类:

在USB2.0中,USB根据数据传输的方向定义了HOST/Device/OTG三种角色,其中OTG即可作为HOST,也可作为Device。
在Type-C中,也有类似的定义,只是名字有了些许修改。如下所示:

  • DFP(Downstream Facing Port):
    下行端口,可以理解为Host或者是HUB。DFP提供VBUS、VCONN,可以接收数据。在协议规范中DFP特指数据的下行传输,笼统意义上指的是数据下行和对外提供电源的设备。当单片机和电脑连接时,DFP一般是电脑。
  • UFP(Upstream Facing Port):
    上行端口,可以理解为Device,UFP从DFP中取电,可为DFP提供数据。典型设备是U盘,移动硬盘。当单片机和电脑连接时,UFP一般是单片机。
  • DRP(Dual Role Port):
    双角色端口,类似于USB2.0的OTG。请注意DRP分为DRD(Dual Role Data)/DRP(Dual Role Power)。DRP既可以做DFP(Host),也可以做UFP(Device),也可以在DFP与UFP间动态切换。典型的DRP设备是手机,手机可以插U盘,此时手机为主设备。手机还可以插电脑上,此时手机为从设备。设备刚连接时作为哪一种角色,由端口的Power Role(参考后面的介绍)决定;后续也可以通过switch过程更改(如果支持USB PD协议的话)。

2.4、TypeC电源角色分类:

根据供电情况USB Type-C将设备划分为Source、Sink等电源角色。注意:电源角色可以和数据角色不一样,可以在电源上是从设备但在数据上是主设备。
在这里插入图片描述
电源角色中的Source是往外供电的,Sink是取电的。有的设备可以在二者之间进行切换,有时候供电有时候取电。
Power Role 详细如下:

a)Source Only
b)默认Source,但是偶尔能够通过PD SWAP切换为SINK模式
c)Sink Only
d)默认SINK,但是偶尔能够通过PD SWAP切换为Source模式
e)Source/SINK 轮换
f)Sourcing Device (能供电的Device,显示器)
g)Sinking Host(吃电的Host,笔记本电脑)

当连接时,供电方需要把CC1和CC2接上拉电阻,用电方把CC1和CC2接下拉电阻,如下图:
在这里插入图片描述
取电方的下拉电阻为固定值5.1K Ω \Omega Ω,而供电方的上拉电阻阻值则代表了供电方的供电能力,如下表:
在这里插入图片描述
其中默认供电功率为USB2.0的5V/200mA,USB3.0的5V/900mA。

2.5、通过CC1/CC2识别各种配置

DFP主设备可以通过检测CC1和CC2对地电阻来判断各种配置模式和正反连接,具体如下表:
在这里插入图片描述
在这里插入图片描述

3、电路图

因为TypeC接口有6P、16P、24P等各种,其中6P只能供电,16P除了供电还有USB2.0的D+和D-引脚,24P包含了全功能USB3.0各个引脚。电路图如下:

3.1、TypeC-6P:

一般单片机可用下面这种电路。
在这里插入图片描述
如果想精简电阻,也可以这样:
在这里插入图片描述
当供电端不带USB控制芯片时,CC1和CC2可共用一个下拉电阻,参考:
https://www.chongdiantou.com/archives/36445.html?tdsourcetag=s_pcqq_aiomsg
此时供电端CC2连接是断开的。但是当使用带Emark的USB控制芯片时,就不行了,此时单片机会被当做模拟音频设备(耳机)而被拒绝供电。

3.2、TypeC-16P:

一般单片机可用下面这种电路:
在这里插入图片描述
同理,也可以将CC1和CC2共用一个5.1K的下拉电阻。

3.3、TypeC-24P:

用24PIN的TypeC时,一般是需要用到USB3.0协议,则TypeC接口中的A2、A3、A10、A11、B2、B3、B10、B11接到相应芯片的USB3.0接口上,将CC1和CC2按相应角色进行上拉下拉或者接到芯片上即可。


http://chatgpt.dhexx.cn/article/9Ct2C4FP.shtml

相关文章

CTP_将C++封装为Python可调用接口

目录 写在前面: 前置准备: step 1 与上期所原始代码对比分析源码 td源码 1 配置属性-》常规-》配置类型 要为 “动态库(.dll)” 2 VC目录 -》包含目录 3 VC目录 -》 库目录 4 链接器-》常规-》附加库目录 5 链接器-》输入-》附加依赖项 vnctp.h 的功…

一文读懂USB Type-C接口 <一>:引脚和功能指南

本文将介绍USB Type-C标准的一些最重要的特性。 你知道如何使用USB Type-C接口吗?本文列出了USB Type-C引脚的解剖结构,并简要介绍了其各种模式。 USB Type-C是一种USB连接器系统的规范,它在智能手机和移动设备中越来越受欢迎,能够提供电力和…

VisionPro连接相机步骤

一、修改相机与电脑IP地址在同一网段上 1、修改相机IP地址 在菜单栏找到 “Cognex GigE Vision Configurator” ,可直接输出搜索。 或者在visionPro默认安装目录下 “C:\Program Files\Cognex\VisionPro\bin”,找到“Cognex GigE Vision Configurator…

机器视觉——相机选型

目录 相机选型 分辨率、快门、帧率、色彩、靶面、接口 镜头选型 分辨率、靶面、焦距、接口、光圈畸变工作距离 常用计算示例 相机选型 分辨率、快门、帧率、色彩、靶面、接口 镜头选型 分辨率、靶面、焦距、接口、光圈畸变工作距离 常用计算示例 1. 面阵相机和镜头选型 已…

线扫相机的选择

1.通过幅宽和精度求像素个数选择相机: Rmin为最小像素数;FOV为检测幅宽;X为检测精度。通过计算结果选择相机大小。 如果幅宽要求120mm,精度要求0.1,得到最少所需像素个数为1200,选择2k的线扫相机即可满足。…

1-CCD相机选型

1-相机分类 2-以像素数选择(高像素型或标准型) 从“像素分辨率”这一点来添加良否判定的基准,可选择最佳像素数的相机! 视觉系统所使用的 CCD 拍摄元件是以格子状排列的较小像素的集合体。在作为标准型经常使用的 31 万像素 CCD …

相机位姿估计

相机位姿估计 前言旋转角度欧拉角相机位姿求解旋转矩阵和旋转向量之间的转换旋转矩阵和欧拉角之间的转换平移量求解代码 前言 这部分内容博主也不是很熟悉,写下这篇博文想记录下自己当时的求解过程,也想让看到的朋友一起讨论,看看我做的对不…

iOS 相册多选 相机选择图片

前言 经过几天的断断续续的编写终于把这一个小项目完成了,现在刚刚完成,代码看着不整洁,请多包涵。 前几天要弄个相册多选和照相选图的功能,以前做过单选上传头像之类的。但是多选确实不像那么简单,github找了好多的…

工业相机和镜头选型技巧

工业相机和镜头选型技巧 一、加接圈,视野为什么会变小?1、视野公式理解2、加接圈后视野变小分析 二、在如下试验台中,加了接圈,图像要清晰,那么相机高度应该如何调整?1、试验台场景2、像距、物距和焦距的关…

工业视觉检测如何选择合适的工业相机?

1、根据应用的不同分别选用CCD或CMOS相机CCD工业相机主要应用在运动物体的图像提取,如贴片机机器视觉,当然随着CMOS技术的发展,许多贴片机也在选用CMOS工业相机。用在视觉自动检查的方案或行业中一般用CCD工业相机比较多。CMOS工业相机由成本…

【工业相机】【深度3】相机选择-精度和曝光需求计算 - 输入:1 被测试物体的最小体积 2 被测物体的移动相对速度

前言:本举例,说明,我们在工业场景下,如果需要在某个速度下计算某个尺寸的物体的工业相机的精度计算方法 1 需求定义 本需求定义为测量一个有移动速度的工业被测物体: 输入参数标识输入参数举例FOVFOV12寸&#xff08…

机器视觉-相机选择方法-缺陷检测

主要分为三部分 1.相机示意图及基本结构 2.相机参数确定方法 3.最终选择 1.相机示意图及基本结构 简图↑ 全图↑ 光圈与景深↑ 2.相机基本参数确定 视野与像素确定 被检测石英镜片的最大直径为38.6mm。也就是最大弥散圆直径。 样品↑ 较小划痕样本↑ 划痕测量↑ 如上图&…

iOS相机选择器

最近有很多朋友加我QQ, 说是在iOS8相机遇到问题.http://blog.csdn.net/chenyong05314/article/details/44812085 本人在使用相机这块时, 所有东西都封装到了一个类里面, 外部使用只需要一行代码, 非常方便, 现分享出来供大家使用. 代码示例: // Controller 为弹出的VC [[Ca…

Swift使用UIImagePickerController 从相册选择图片、从相机选择图片

配置: 如果是相机使用,需要在info.plist文件增加使用前应用程序说明;相机使用也是如此。(第二个是CALENDARS权限,打错了;图片是Photo Library Usage Description) 从相册选择图片&#xff1a…

摄影小白入门相机选择(个人出发)

1.微单与卡片机 在产品质量上,相机的感光器件CMOS这些,可以一概认为,同价同质。 两者的区别主要在镜头的设计,黑卡被设计为不可更换镜头式无反相机,入门级别的一般搭配标准变焦镜头 如16-55这种焦距,旗舰级…

机器视觉系统中相机镜头选型技巧_工业相机在机器视觉系统中的地位和作用

一、什么是工业相机 工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的选择不仅直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。 二、工业相…

栅格重投影(投影变换)

OpenLayers能够在不同的坐标系统中显示来自WMS、WMTS、静态图像和许多其他源的栅格数据。图像的地图重投影直接发生在web浏览器中。在任何Proj4js支持的坐标参考系统中都是可视的,并且以前不兼容的图层现在可以组合和叠加。 使用: API的使用非常简单。…

坐标系与投影变换

所有空间数据必须纳入到相同空间参考基准下才可以进行空间分析,因此坐标系和投影变换十分重要,这也是地理信息系统的基础。坐标系是数据或地图的属性,而投影是坐标系的属性。 一、地球形状(三级逼近) 地球表面→ 大地水…

Opencv——几何空间变换(仿射变换和投影变换)

几何空间变换 【1】几何变换(空间变换)简述【2】变换矩阵知识简述齐次坐标的概念几何运算矩阵 【3】图像的仿射变换1、平移变换2、比例缩放3、旋转4、对称变换(不做展示)1、关于X轴变换2、关于Y轴变换3、关于直线YX变换4、关于直线…