迁移网络的应用-图像风格迁移

article/2025/9/18 8:47:14

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

图1

如上图所示,从A-E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  1. 生成的图像需要具有原图片的内容特征
  2. 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。

此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

图1

相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。细化的结果可以分为两个方面:

(1)内容损失 

(2)风格损失

内容损失

由于图1中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且

c=φ.channel,w=φ.weight,h=φ.height,则有:

可以简单使用代码实现:

def content_loss(content_img, rand_img):content_layers = [('relu3_3', 1.0)]content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in content_layers:# 计算特征矩阵p = get_vgg(content_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽xchannelM = p.shape[1] * p.shape[2] * p.shape[3]# 根据公式计算损失,并进行累加content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(content_layers)return content_loss

 

风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

第三个部分不是必须的,被称为Total Variation Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。 其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(style_img, rand_img):style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]style_loss = 0.0# 逐个取出衡量风格损失的vgg层名称及对应权重for layer_name, weight in style_layers:# 计算特征矩阵a = get_vgg(style_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(style_layers)return style_loss

主代码实现

代码实现主要分为4步:

1、随机生成图片
2、读取内容和风格图片
3、计算总的loss
4、训练修改生成图片的参数,使得loss最小

简单实现主要函数

def main():# 生成图片rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)with tf.Session() as sess:content_img = cv2.imread('content.jpg')style_img = cv2.imread('style.jpg')# 计算loss值cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())for step in range(TRAIN_STEPS):# 训练sess.run([optimizer,  rand_img])

迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:我在这里使用的是VGG-19网络,也可以使用VGG-16来实现,区别在于网络结构和layers不同而已:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

下载地址:http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat

下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

 

总的代码如下:

 

import tensorflow as tf
import numpy as np
import scipy.io
import cv2
import scipy.miscHEIGHT = 300
WIGHT = 450
LEARNING_RATE = 1.0
NOISE = 0.5
ALPHA = 1
BETA = 500TRAIN_STEPS = 200OUTPUT_IMAGE = "D://python//img"
STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]
CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(sess, style_neck, model):style_loss = 0.0for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = style_neck[layer_name]x = model[layer_name]# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weightstyle_loss /= len(STYLE_LAUERS)return style_lossdef content_loss(sess, content_neck, model):content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = content_neck[layer_name]x = model[layer_name]# 长x宽M = p.shape[1] * p.shape[2]N = p.shape[3]lss = 1.0 / (M * N)content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(CONTENT_LAYERS)return content_lossdef random_img(height, weight, content_img):noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])random_img = noise_image * NOISE + content_img * (1 - NOISE)return random_imgdef get_neck(sess, model, content_img, style_img):sess.run(tf.assign(model['input'], content_img))content_neck = {}for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = sess.run(model[layer_name])content_neck[layer_name] = psess.run(tf.assign(model['input'], style_img))style_content = {}for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = sess.run(model[layer_name])style_content[layer_name] = areturn content_neck, style_contentdef main():model = vgg19()content_img = cv2.imread('D://a//content1.jpg')content_img = cv2.resize(content_img, (450, 300))content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]style_img = cv2.imread('D://a//style1.jpg')style_img = cv2.resize(style_img, (450, 300))style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]# 生成图片rand_img = random_img(HEIGHT, WIGHT, content_img)with tf.Session() as sess:# 计算loss值content_neck, style_neck = get_neck(sess, model, content_img, style_img)cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())sess.run(tf.assign(model['input'], rand_img))for step in range(TRAIN_STEPS):print(step)# 训练sess.run(optimizer)if step % 10 == 0:img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"img = img[0]cv2.imwrite(name, img)img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)cv2.imwrite("D://end.jpg", img[0])main()

由于时间原因,我训练了200次后得出的结果为:

读者可以增加训练迭代次数,获得效果更佳的风格迁移图像。


http://chatgpt.dhexx.cn/article/7qPdl73h.shtml

相关文章

图像风格迁移算法学习总结

目录 一、简要说明 二、具体实施步骤 2.1综述 2.2基本思路 2.3核心思路 2.4基本问题处理 三、代码的简要描述 四、成果展示 一、简要说明 本次学习的图像风格迁移算法是基于一个2015年由Gatys等人发表的文章A Neural Algorithm of Artistic Style_的一个代码复…

【数字图像处理】图像风格迁移

代码和实验报告下载:http://download.csdn.net/detail/jsgaobiao/9523313 【作业要求】 设计自己的算法完成一个附图所示的图像风格迁移算法(基于matlab的快速实现)(很可能用到,并且鼓励使用)基于频率域…

图像风格迁移 CycleGAN原理

CycleGAN是一种很方便使用的用于进行图像风格转换的模型。它的一大优势就在于不需要成对的数据集就可以进行训练。比如我们只需要随便一大堆真人图像和随便另一大堆动漫图像,就可以训练出这两类风格互相转换的模型。 CycleGAN进行风格转换的原理是这样的&#xff1a…

Python实现基于深度学习的图像风格迁移

目录 一、选题意义与背景介绍 3 1.1背景介绍 3 1.2选题意义 3 二、相关方法介绍 4 2.1纹理建模 4 2.2图像重建 4 2.3图像风格迁移 4 2.3.1基于在线图像优化的慢速图像风格化迁移算法 4 2.3.2基于离线模型优化的快速图像风格化迁移算法 5 2.4图像风格迁移效果评估 6 三、具体方法…

图片风格迁移

##将图片进行风格迁移,将第一幅图片的均值平均差换成第二幅图的均值平方差。第三张是生成的图片 from numpy.lib.type_check import _imag_dispatcher from builtins import print from os import pread import sys from PIL import Image,ImageStat import numpy …

图像风格迁移及代码实现

图像风格迁移其实非常好理解,就是将一张图像的“风格”(风格图像)迁移至另外一张图像(内容图像),但是这所谓的另外一张图像只是在“风格”上与之前有所不同,图像的“内容”仍要与之前相同。Luan…

(一)图像风格迁移

图像风格迁移即把图像A的风格和图像B的内容按照一定比例结合,输出具备图像A风格和图像B内容的图像C. [github传送门1]https://github.com/anishathalye/neural-style [github传送门2]https://github.com/Quanfita/Neural-Style/tree/master/examples 系列文章 (二)快速图像风格…

图像风格迁移与快速风格迁移的对比(感知损失)

最近一段时间要写数字图像处理的文献综述,《深度学习在图像风格迁移中的原理与应用综述》。只能感慨自己一时选题不审,导致期末火葬场啊…… 这个问题我纠结了一天,看了N多篇文献(全是英文的…),结果还是没…

图像风格迁移【老版】

深度学习目前为止最有用的东西是图像处理,我们可以用它在极早期判断癌症, 也可以用它在茫茫人海里寻找犯人,但是要我说你能写一个小程序取悦女朋友, 你就不一定能信, 这一招叫艺术风格变换,就是你点击一下&…

图像风格迁移-DSTN

样式传输的目的是从参考图像中再现具有样式的内容图像。现有的通用风格转换方法成功地以艺术或照片逼真的方式将任意风格传递给原始图像。然而,现有作品所定义的“任意风格”的范围由于其结构限制而在特定领域内受到限制。具体而言,根据预定义的目标域来…

学习笔记:图像风格迁移

所谓图像风格迁移,是指利用算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。著名的国像处理应用Prisma是利用风格迁移技术,将普通用户的照片自动变换为具有艺术家的风格的图片。这篇文章会介绍这项技术背后的原理&#…

图像风格迁移实战

最近看了一些基于深度学习的Style Transfer, 也就是风格迁移相关的paper,感觉挺有意思的。 所谓风格迁移,其实就是提供一幅画(Reference style image),将任意一张照片转化成这个风格,并尽量保留原照的内容(Content)。之前比较火的…

Pytorch实现图像风格迁移(一)

图像风格迁移是图像纹理迁移研究的进一步拓展,可以理解为针对一张风格图像和一张内容图像,通过将风格图像的风格添加到内容图像上,从而对内容图像进行进一步创作,获得具有不同风格的目标图像。基于深度学习网络的图像风格迁移主要有三种类型,分别为固定风格固定内容的风格…

毕设 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这…

图像风格迁移

文章目录 前言一、传统的图像风格迁移(Traditional style transfer)1.1计算机图形学领域和计算机视觉领域(Computer Graphics&Computer Vision)1.2非真实感图形学(Non-photorealistic graphics)和纹理迁…

ARM SMMU的原理与IOMMU

首先放一个社区iommupatch的网址:https://lore.kernel.org/linux-iommu/ 1: arm smmu的原理 1.1: smmu 基本知识 如上图所示,smmu 的作用和mmu 类似,mmu作用是替cpu翻译页表将进程的虚拟地址转换成cpu可以识别的物理地址。同理,sm…

ARM SMMU学习笔记

1. 什么是SMMU? SMMU(system mmu),是I/O device与总线之间的地址转换桥。 它在系统的位置如下图: 它与mmu的功能类似,可以实现地址转换,内存属性转换,权限检查等功能。 2. 为什么需要SMMU? 了解…

SMMU架构手册之数据结构和转换流程(1)

SMMU使用内存中一组数据结构来放置转换数据。寄存器指向初始根结构STE的基地址。STE包含stage2转换表基地址指针,同时也指向stage1的配置结构,该配置结构包含转换表基指针。CD表示stage1转换,STE表示stage2转换。 因此SMMU使用两组明确的结构…

SMMU架构手册之数据结构和转换流程(2)

STE包含每个stream的配置: 是否使能来之设备的流量;是否是stage1转换;是否是stage2转换哪个数据结构定位到stage1的转换表 若使用stage1,STE使用域STE.S1ContextPtr来指示内存中的一个或多个CD的地址。 CD关联起streamID和stage1…

ARM_SMMU_上

本篇参考 arm 官网公开材料 和 小崔的linux 专栏 https://zhuanlan.zhihu.com/p/105005488 宋宝华老师MMU介绍 armv8-armv9 MMU深度学习 MMU简介 MMU是Memory Management Unit的缩写,中文名是内存管理单元。它是一种负责处理中央处理器(CPU)…