matlab伯努利分布,常用的概率分布:伯努利分布、二项式分布、多项式分布、先验概率,后验概率...

article/2025/9/18 4:19:47

一,伯努利分布(bernouli distribution)

又叫做0-1分布,指一次随机试验,结果只有两种。也就是一个随机变量的取值只有0和1。记为: 0-1分布 或B(1,p),其中 p 表示一次伯努利实验中结果为正或为1的概率。

概率计算:

21a10a99cde64df90905755ab1ded085.png

P(X=0)=p0P(X=1)=p1

期望计算:

0549d6e7fc756815caa3014be741ba91.png

E(X)=0∗p0+1∗p1=p

最简单的例子就是,抛一次硬币,预测结果为正还是反。

二,二项式分布(binomial distrubution)

表示n次伯努利实验的结果。

记为:X~B(n,p),其中n表示实验次数,p表示每次伯努利实验的结果为1的概率,X表示n次实验中成功的次数。

概率计算:

84942bd0d943b39418fb815701cf3b23.png

期望计算:

42d511fdaceb0d39313dad800f6aa22d.png

例子就是,求多次抛硬币,预测结果为正面的次数。

三,多项式分布(multinomial distribution)

多项式分布是二项式分布的扩展,不同的是多项式分布中,每次实验有n种结果。

概率计算:

49930ae7b71803afe98673cdf9b3ce44.png

期望计算:

3be8b25a5473a7ceb621df8fce998897.png

最简单的例子就是多次抛筛子,统计各个面被掷中的次数。

四,先验概率,后验概率,共轭分布

先验概率和后验概率 :

先验概率和后验概率的概念是相对的,后验的概率通常是在先验概率的基础上加入新的信息后得到的概率,所以也通常称为条件概率。比如抽奖活动,5个球中有2个球有奖,现在有五个人去抽,小名排在第三个,问题小明抽到奖的概率是多少?初始时什么都不知道,当然小明抽到奖的概率P( X = 1 ) = 2/5。但当知道第一个人抽到奖后,小明抽到奖的概率就要发生变化,P(X = 1| Y1 = 1) = 1/4。

再比如自然语言处理中的语言模型,需要计算一个单词被语言模型产生的概率P(w)。没有看到任何语料库的时候,我们只能猜测或者平经验,或者根据一个文档中单词w的占比,来决定单词的先验概率P(w) = 1/1000。之后根据获得的文档越多,我们可以不断的更新

30167f4763e1bff3e260cba661f06bab.png。也可以写成

008d4304c9c157f0ae9659cf959f2c0b.png。再比如,你去抓娃娃机,没抓之前,你也可以估计抓到的概率,大致在1/5到1/50之间,它不可能是1/1000或1/2。然后你可以通过投币,多次使用娃娃机,更据经验来修正,你对娃娃机抓到娃娃的概率推断。后验概率有时候也可以认为是不断学习修正得到的更精确,或者更符合当前情况下的概率。

共轭分布 :

通常我们可以假设先验概率符合某种规律或者分布,然后根据增加的信息,我们同样可以得到后验概率的计算公式或者分布。如果先验概率和后验概率的符合相同的分布,那么这种分布叫做共轭分布。共轭分布的好处是可以清晰明了的看到,新增加的信息对分布参数的影响,也即概率分布的变化规律。


http://chatgpt.dhexx.cn/article/3F1ObbaW.shtml

相关文章

伯努利分布(一种离散分布)

伯努利分布(0-1分布) 笔记来源:Introduction to the Bernoulli Distribution 伯努利分布(1次试验)是二项分布(n次试验)的特例,其中进行了一次实验( n 1 n1 n1&#xff…

伯努利分布(Bernoulli distribution)

伯努利分布 是一种离散分布,有两种可能的结果。1表示成功&#xff0c;出现的概率为p(其中0<p<1)。0表示失败&#xff0c;出现的概率为q1-p。这种分布在人工智能里很有用&#xff0c;比如你问机器今天某飞机是否起飞了&#xff0c;它的回复就是Yes或No&#xff0c;非常明确…

伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布

https://blog.csdn.net/michael_r_chang/article/details/39188321 https://www.cnblogs.com/wybang/p/3206719.html https://blog.csdn.net/jteng/article/details/60334628 1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布&#xff0c;介绍伯努利分…

【愚公系列】2022年09月 微信小程序-自定义tabBar的实现

文章目录 前言一、自定义tabBar的实现1.全局配置2.主页面3.CustomTabBar组件4.效果 前言 小程序自带的tabBar可以参考这篇文章&#xff1a;https://codeboy.blog.csdn.net/article/details/123040278 因为小程序自带的tabBar&#xff0c;比较单一&#xff0c;无法满足多样化需…

[cryptoverse ctf 2022] cvctf

一直在等wp&#xff0c;一直没找着&#xff0c;没有wp就没有进步。 把已知部分写出来吧&#xff0c;抛砖引玉 这个比赛只有crypto,reverse和misc(除一个签到外&#xff0c;都推特油管和谷歌网盘的题作不了) 目录 crypto Warmup 3 Warmup 1 Warmup 2 Substitution RSA 1…

Python | NumPy | 3D 数据可视化 - 散点图

本文介绍如何使用NumPy相关的数据实现数据的3D散点图可视化。 Updated: 2022 / 03 / 06 Python | NumPy | 3D 数据可视化 - 散点图 数据导入及清洗导入清洗获取全部坐标筛选特定坐标 数据3D可视化散点图单图多子图 参考链接 数据导入及清洗 先导入坐标集数据&#xff0c;再进行…

使用 Learner Lab - 使用 API Gateway 与 Lambda 上传图片到 S3

使用 Learner Lab - 使用 API Gateway 与 Lambda 上传图片到 S3 AWS Academy Learner Lab 是提供一个帐号让学生可以自行使用 AWS 的服务&#xff0c;让学生可以在 100 USD的金额下&#xff0c;自行练习所要使用的 AWS 服务&#xff0c;如何进入 Learner Lab 请参考 使用 Lear…

12306查询车票(爬虫小练_1)

文章目录 导入模块导入City.json文件内容分析撸代码city.json文件 导入模块 # 数据请求模块 import requests # 序列化和反序列化 import json # 表格格式输出&#xff08;美化输出&#xff09; import prettytable as pt 导入City.json文件 里面存放的是城市的对应标识(放在文…

K8S+Jenkins+Harbor+Docker+gitlab集群部署

K8SJenkinsHarborDockergitlab服务器集群部署 所需资源下载地址 将此文章写给我最心爱的女孩 目录 K8SJenkinsHarborDockergitlab服务器集群部署1.准备以下服务器2.所有服务器统一处理执行2.1 关闭防火墙2.2 关闭selinux2.3 关闭swap&#xff08;k8s禁止虚拟内存以提高性能&a…

多项式运算

多项式求逆 已知 f ( x ) f(x) f(x)&#xff0c;求 g ( x ) g(x) g(x)满足 f ( x ) g ( x ) ≡ 1 ( m o d x n ) f(x)g(x)\equiv 1\pmod{x^n} f(x)g(x)≡1(modxn)。 若 f 0 0 f_00 f0​0&#xff0c;那么显然不可能存在形式幂级数 g ( x ) g(x) g(x)满足条件。于是假定 f 0 …

Beyond Accuracy:Behavioral Testing of NLP Models with Checklist 论文阅读

本文主要介绍以及翻译一篇ACL2020 Best Paper Beyond Accuracy:Behavioral Testing of NLP Models with Checklist Abstract 尽管传统评估模型好坏的方法是在测试集上观察accuracy指标&#xff0c;然而这个指标常常高估了NLP模型的真实表现&#xff0c;而另外一些评估模型的方法…

国密 SM4 高并发服务 加压测服务 加生成秘钥 结合上篇一起使用 国密 SM2 SM3 SM4 后续升级版本,内容丰富单独写一篇百万压测4000毫秒加解密

介绍 这篇是专门适用于高并发场景的加解密功能服务&#xff0c;提供了并发代码 &#xff0c;压测代码 以及压测报告结合上篇文章一起使用最好&#xff0c;先看上篇在看这篇&#xff0c;循序渐进&#xff0c;上篇主要看SM4 方面即可其他概要观看即可&#xff0c;有需要可以看看也…

创建dependencies.gradle文件报错

创建AS项目统一管理build.gradle但是报错 1.Only Project and Settings build scripts can contain plugins {} blocks 大概意思&#xff0c;是使用plugins目前还不能在自己创建的gradle文件中使用所以还是需要使用apply plugin 2.dependencies.gradle No signature of method…

JCE cannot authenticate the provider BC

我是用hutool做RSA加密时候出现这个问题的&#xff0c;具体原因网上各说各的&#xff0c;解决办法也试过下载jar、配置jvm&#xff0c;用是能用&#xff0c;但是我们是在公共包写的&#xff0c;部署新服务的时候就麻烦了。 看了下hutool报错的地方&#xff0c;顺着找了找&#…

JDK8安装JCE无限强度

原文&#xff1a;https://www.jianshu.com/p/de81059a9e97 https://blog.csdn.net/arctan90/article/details/68066660 报错提示&#xff1a; Exception in thread "main" org.jasypt.exceptions.EncryptionOperationNotPossibleException: 下载jar&#xff1a;h…

java jce配置_jce_policy安装【java密码扩展无限制权限策略文件安装】

下载与JDK或JRE对应版本的jce文件包&#xff0c;当前机器的jdk为1.8&#xff0c;所以下载jce_policy-8.zip。 下载解压后&#xff0c;把jar文件上传到需要安装jce机器上JDK或JRE的security目录下&#xff0c;覆盖源文件即可。 JDK&#xff1a;将两个jar文件放到%JDK_HOME%\jre\…

java jce配置_配置jce开发环境 | 学步园

虽然JDK1.4将java安全包包含在核心库中&#xff0c;但如果不对jce进行配置&#xff0c;也没办法使用jce进行开发。 首先从sun网上下载jce1.2.2(我在网上看到的都是下载一个包&#xff0c;没用sun默认的)&#xff0c;然后把解压得到的lib里面的所有jar文件拷到your_jdk\jre\lib\…

java jce-KeyGenerator(密钥生成)

java jce-KeyGenerator&#xff08;密钥生成&#xff09; 在开发时&#xff0c;总要涉及到数据的加密与解密&#xff0c;之前一直有些糊涂&#xff0c;最近看了 jce.jar的源码&#xff0c;来整理记录一下 接着上篇 java jce-Cipher&#xff08;加密、解密&#xff09; 来介绍…

java jce-Cipher(加密、解密)

java jce-Cipher&#xff08;加密、解密&#xff09; 在开发时&#xff0c;总要涉及到数据的加密与解密&#xff0c;之前一直有些糊涂&#xff0c;最近看了 jce.jar的源码&#xff0c;来整理记录一下 1、概念 JCA&#xff08;Java Cryptography Architecture&#xff09;: J…

什么是文件扩展名 JCE?

有没有人给您发送过 JCE文件&#xff0c;而您却不知道该如何打开&#xff1f;可能您在电脑上发现了一个 JCE文件却不知道这是做什么用的&#xff1f;Windows 可能会告诉您无法打开文件&#xff0c;或者最糟糕的是&#xff0c;您可能会收到一个JCE文件相关的错误信息。 打开JCE文…