约束优化:约束优化的三种序列无约束优化方法

article/2025/10/3 9:33:23

文章目录

  • 约束优化:约束优化的三种序列无约束优化方法
    • 外点罚函数法
      • L2-罚函数法:非精确算法
        • 对于等式约束
        • 对于不等式约束
      • L1-罚函数法:精确算法
    • 内点罚函数法:障碍函数法
    • 等式约束优化问题的拉格朗日函数法:Uzawa's Method for convex optimization
    • 参考文献

约束优化:约束优化的三种序列无约束优化方法

罚函数法是指将约束作为惩罚项加到目标函数中,从而转化成熟悉的无约束优化问题。

外点罚函数法

简而言之,外点罚函数法是指对于可行域外的点,惩罚项为正,即对该点进行惩罚;对于可行域内的点,惩罚项为0,即不做任何惩罚。因此,该算法在迭代过程中点列一般处于可行域之外,惩罚项会促使无约束优化问题的解落在可行域内。罚函数一般由约束部分乘正系数组成,通过增大该系数,我们可以更严厉地惩罚违反约束的行为,从而迫使惩罚函数的最小值更接近约束问题的可行区域。

L2-罚函数法:非精确算法

对于等式约束

在这里插入图片描述 在这里插入图片描述

对于不等式约束

在这里插入图片描述 在这里插入图片描述

对于一般优化问题,则是将上述不等式约束和等式约束的惩罚项加到一起。

在这里插入图片描述

什么情况下使用L2-罚函数法?

  • 实际优化问题中,等式与不等式约束具有物理意义;
  • 约束违背量不要求特别小,在1e-2~1e-3之间可接受就行。例如某优化问题中速度约束 v ≤ 10 v \leq 10 v10,解 v = 10.01 v=10.01 v=10.01也可以接受。

使用该方法时,可采用如下两种方式:

  • 一步到位,即取 σ \sigma σ足够大,直接解无约束罚函数P最优化问题,此时P最优解是个近似解,与实际最优解之间的误差在可接受范围内;
  • 序列迭代优化,例如:

σ = 1 ⟹ P ( x , 1 ) \sigma=1 \implies P(x,1) σ=1P(x,1),解 x 1 ∗ = x 1 x^{*}_{1}=x_1 x1=x1;

σ = 10 ⟹ P ( x , 10 ) \sigma=10 \implies P(x,10) σ=10P(x,10),上一次迭代 x 1 x_1 x1作初值解 x 2 ∗ = x 2 x^{*}_{2}=x_2 x2=x2;

σ = 100 ⟹ P ( x , 100 ) \sigma=100 \implies P(x,100) σ=100P(x,100),上一次迭代 x 2 x_2 x2作初值解 x 3 ∗ = x 3 x^{*}_{3}=x_3 x3=x3;

​ ……直到达到收敛准则。算法伪代码如下:

在这里插入图片描述

一般情况下,具体选择何种方式取决于实际工程问题的精度需求和速度需求。

L2-罚函数法的优缺点?

优点:

  • 将约束优化问题转化为无约束优化问题,当 c i ( x ) c_i(x) ci(x)光滑时可以调用一般的无约束光滑优化问题算法求解;
  • 二次罚函数形式简洁直观而在实际中广泛使用。

缺点:

  • 需要 σ → ∞ \sigma \rightarrow \infty σ,此时海瑟矩阵条件数过大,对于无约束优化问题的数值方法拟牛顿法与共轭梯度法存在数值困难,且需要多次迭代求解子问题;
  • 对于存在不等式约束的 P ( x , σ ) P(x,\sigma) P(x,σ)可能不存在二次可微性质,光滑性降低;
  • 不精确,与原问题最优解存在距离。

例子:

在这里插入图片描述 在这里插入图片描述

L1-罚函数法:精确算法

由于L2-罚函数法存在数值困难,并且与原问题的解存在误差,因此考虑精确罚函数法。精确罚函数是一种问题求解时不需要令罚因子趋于正无穷(或零)的罚函数。换句话说,若罚因子选取适当,对罚函数进行极小化得到的解恰好就是原问题的精确解。这个性质在设计算法时非常有用,使用精确罚函数的算法通常会有比较好的性质。

由于L1-罚函数非光滑,因此无约束优化问题P的收敛速度无法保证,这实际上就相当于用牺牲收敛速度的方式来换取优化问题P的精确最优解。

在这里插入图片描述

内点罚函数法:障碍函数法

前面介绍的L1和L2罚函数均属于外点罚函数,即在求解过程中允许自变量 x x x位于原问题可行域之外,当罚因子趋于无穷时,子问题最优解序列从可行域外部逼近最优解。自然地,如果我们想要使得子问题最优解序列从可行域内部逼近最优解,则需要构造内点罚函数。顾名思义,内点罚函数在迭代时始终要求自变量 x x x不能违反约束,因此它主要用于不等式约束优化问题

如下图所示,考虑含不等式约束的优化问题,为了使迭代点始终在可行域内,当迭代点趋于可行域边界时,我们需要罚函数趋于正无穷。常见的罚函数有三种:对数罚函数,逆罚函数和指数罚函数。对于原问题,它的最优解通常位于可行域边界,即 c i ( x ) ≤ 0 c_i(x) \leq 0 ci(x)0中至少有一个取到等号,此时需要调整惩罚因子 σ \sigma σ使其趋于0,这会减弱障碍罚函数在边界附近的惩罚效果。

在这里插入图片描述

算法伪代码如下:

在这里插入图片描述

同样地,内点罚函数法也会有类似外点罚函数法的数值困难,即当 σ \sigma σ趋于0时,子问题 P ( x , σ ) P(x,\sigma) P(x,σ)的海瑟矩阵条件数会趋于无穷,因此对子问题的求解将会越来越困难。

在这里插入图片描述

等式约束优化问题的拉格朗日函数法:Uzawa’s Method for convex optimization

基础预备:

凸优化学习笔记(一)

凸优化学习笔记:Lagrange函数、对偶函数、对偶问题、KKT条件

多元函数的极值和鞍点

**若原问题是凸问题,则KKT条件是充要条件。**原问题连续凸则拉格朗日函数严格凸,原问题的最优值 p ∗ p^* p与对偶问题的最优值 d ∗ d^* d相等, ( x ∗ , λ ∗ ) (x^*,\lambda ^*) (x,λ)是拉格朗日函数的鞍点,同时也是原问题和对偶问题的最优解。

在这里插入图片描述 在这里插入图片描述

综上分析,Uzawa’s Method迭代过程分为两个步骤:
{ x k + 1 = argmin ⁡ x L ( x , λ k ) λ k + 1 = λ k + α ( A x k + 1 − b ) \left\{\begin{array}{l} x^{k+1}=\underset{x}{\operatorname{argmin}} \mathcal{L}\left(x, \lambda^k\right) \\ \lambda^{k+1}=\lambda^k+\alpha\left(A x^{k+1}-b\right) \end{array}\right. {xk+1=xargminL(x,λk)λk+1=λk+α(Axk+1b)
(1)给定 λ k \lambda^k λk,求解 min ⁡ x L ( x , λ k ) \min _x \mathcal{L}(x, \lambda^k) minxL(x,λk)无约束优化问题,求解得到 x k + 1 x^{k+1} xk+1

(2)更新 λ \lambda λ L ( x k + 1 , λ ) L(x^{k+1},\lambda) L(xk+1,λ)关于 λ \lambda λ的梯度为 ∂ L ∂ λ ∣ x + 1 = A x k + 1 − b \left.\frac{\partial L}{\partial \lambda}\right|_{x+1}=A x^{k+1}-b λL x+1=Axk+1b,若要求解 max ⁡ λ L ( x k + 1 , λ ) \max _\lambda \mathcal{L}(x^{k+1}, \lambda) maxλL(xk+1,λ),则沿着梯度上升方向进入步长迭代,即 λ k + 1 = λ k + α ( A x k + 1 − b ) \lambda^{k+1}=\lambda^k+\alpha\left(A x^{k+1}-b\right) λk+1=λk+α(Axk+1b) α \alpha α为迭代步长。

该方法的前提就是原函数连续凸, L ( x , λ ) \mathcal L(x,\lambda) L(x,λ)关于 x x x严格凸,则 min ⁡ x L ( x , λ k ) \min _x \mathcal{L}(x, \lambda^k) minxL(x,λk)只存在一个最优解,可求出唯一 x k + 1 x^{k+1} xk+1进而更新 λ k + 1 \lambda^{k+1} λk+1,否则 x k + 1 x^{k+1} xk+1会存在多个,不知道选择哪个去更新 λ \lambda λ。因此缺点很明显,该方法要求原函数必须为连续凸函数,梯度上升步长需要调整且收敛速率不能保证。


参考文献

机器人中的数值优化

最优化:建模、算法与理论/最优化计算方法


http://chatgpt.dhexx.cn/article/2EoMjl1t.shtml

相关文章

常用优化算法

大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的…

智能优化算法期末复习

目录 一、GA遗传算法 二、ACO蚁群算法 三、PSO粒子群算法 四、SA模拟退火算法 五、ABC人工蜂群算法 六、DE差分进化算法 七、TA阈值接收算法 八、综合 一、GA遗传算法 1.运算流程 2.遗传算法适应值分配策略(基于目标函数的直接分配、基于排名的分配&#xf…

智能优化算法

目录 进化类算法 遗传算法 概述 特点 改进方向 算法流程 差分进化算法 概述 原理 特点 算法流程 免疫算法 概述 优点 算法流程 群智能算法 蚁群算法(ACO) 概述 特点 算法流程 改进的蚁群算法 粒子群算法(PSO) 概述 特点 算法流程 蝙蝠算法(Bat Algorithm,BA) 模拟退火算法 概述…

优化方法总结(梯度下降法、牛顿法、拟牛顿法等)

梯度下降法 梯度下降法是最简单,也是最常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解/一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思…

几种常用的优化方法梯度下降法、牛顿法、)

几种常用的优化方法 1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简单,coding 方便,是训练模型的必备利器之一。 2. 几个数…

常见的几种最优化方法(梯度下降法、牛顿法、拟牛顿法、共轭梯度法等)

常见的几种最优化方法(梯度下降法、牛顿法、拟牛顿法、共轭梯度法等) 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是…

优化方法

一阶优化方法:梯度下降法 梯度下降不一定能够找到全局最优解,有可能是一个局部最优解。如果损失函数是凸函数,梯度下降法得到的解一定是全局最优解。 梯度下降法分为三类: batch gradient descent 每次更新参数使用全部的样本&a…

Visual Studio 2012安装教程

1.鼠标右击软件压缩包,选择解压到【Visual Studio2012】。 2.双击打开【Visual Studio2012】文件夹。 3.双击打开【安装包】。 4.选中【vs_ultimate】后,鼠标右击选择【以管理员身份运行】。 5.更改软件安装路径:建议安装到除C盘以外的磁盘&a…

vs2022的下载及安装教程

Visual Studio在团队项目开发中使用非常多且功能强大,支持开发人员编写跨平台的应用程序;Microsoft Visual C 2022正式版(VC2022运行库),具有程序框架自动生成,灵活方便的类管理,强大的代码编写等功能,可提供编辑C语言…

VS2012安装步骤

学习C#一段时间了,安装了VS,在安装的过程中,没有想象中的那么顺利,一直想记录一下,今天在此小编来介绍一下VS的安装吧! 1.exe安装文件直接双击,安装就开始啦! 2.选择安装路径&#…

【数据库系统工程师】第9章 非关系型数据库NoSQL

目录 思维导图9.1 NoSQL概述1.三高需求面前,NoSQL应运而生 9.2 相关理论基础1.一致性2.分区3.存储分布4.查询模型 9.3 NoSQL数据库的种类1.分类与特点2.文档存储3.键值存储4.列存储5.图存储6.其他存储模式 9.4 NoSQL应用案例与新技术1.HBase数据库2.云数据库GeminiD…

NOSQL数据库习题

NOSQL数据库习题 第一章第二章第三章第四章第五章NoSQL数据库上机测试 第一章 1.写出DB、RDB、DBMS、TRDB、NoSQL、NewSQL、NDFS的中文名称。 答:DB:数据库 RDB:关系型数据库 DBMS:数据库管理系统 TRDB:传统关系型数…

NoSql数据库使用心得

http://bbs.chinaunix.net/thread-4168061-1-1.html NoSql数据库这个概念听闻许久了,也陆续看到很多公司和产品都在使用,优缺点似乎都被分析的清清楚楚。但我心里一直存有一个疑惑,它的出现究竟是为了解决什么问题? 这个疑惑非…

NoSQL - 学习/实践

1.应用场景 主要用于学习NoSQL数据库, 与关系型数据库的区别, 以及各自的原理实现,应用场景。 2.学习/操作 1.文档阅读 What is NoSQL? | Nonrelational Databases, Flexible Schema Data Models | AWS Relational (SQL) or NoSQL? - Ama…

NoSQL数据库入门

为什么80%的码农都做不了架构师&#xff1f;>>> NoSQL数据库入门 本书是一本NoSQL入门书&#xff0c;从最基本的NoSQL发展史开始&#xff0c;介绍了memcached、Tokyo、Redis和MongoDB的等NoSQL数据库的使用背景、优缺点和具体应用案例...更多<< 转载于:h…

SQL与NoSQL数据库入门基础知识详解

这几年的大数据热潮带动了一激活了一大批hadoop学习爱好者。有自学hadoop的&#xff0c;有报名培训班学习的。所有接触过hadoop的人都知道&#xff0c;单独搭建hadoop里每个组建都需要运行环境、修改配置文件测试等过程。对于我们这些入门级新手来说简直每个都是坑。国内的发行…

大数据开发学习:NoSQL数据库入门

大数据处理&#xff0c;涉及到从数据获取到数据存储、数据计算的诸多环节&#xff0c;各个环节需要解决的问题不同&#xff0c;相关岗位要求的技能也不同。在数据存储阶段&#xff0c;对数据库选型是非常重要的一项工作。今天的大数据开发学习分享&#xff0c;我们就来聊聊NoSQ…

Nosql复习笔记,教材《NoSQL数据库入门与实践》

Nosql复习笔记 目录 一、NoSQL数据库的主要技术特点有以下几种。 二、单机的局限性 三、服务器的纵横扩充 四、帽子定理CAP 五、BASE:基本可用(BA)、 软状态(S)、最终一致性(E) 六、键值数据库实现基本原理 七、键值数据库存储结构基本要素 八、键值存储特点&#xff…

NoSQL数据库入门概述

关系型数据库与NoSql数据库 什么是NoSQL Not Only SQL&#xff0c;其含义是&#xff1a;适合关系型数据库的时候就是用关系型数据库&#xff0c;不适用的时候也没必要非得使用关系型数据库不可&#xff0c;可以考虑使用更加合适的数据存储。 为弥补关系型数据库的不足&am…

MongoDB(NoSQL)数据库入门及基本操作

文章目录 一、NoSQL 简介1.1 NoSQL的优点1.2 NoSQL的缺点1.3 NoSQL的分类 二、MongoDB2.0 demo示例2.1 install and connect mongoose2.2 基本指令 一、NoSQL 简介 NoSQL(NoSQL Not Only SQL )&#xff0c;意即"不仅仅是SQL"&#xff0c;是非关系型的数据库。 NoS…