WireShark抓包分析

article/2025/11/7 2:47:12

简述:本文介绍了抓包数据含义,有TCP报文、Http报文、DNS报文。如有错误,欢迎指正。

1、TCP报文

TCP:(TCP是面向连接的通信协议,通过三次握手建立连接,通讯完成时要拆除连接,由于TCP 是面向连接的所以只能用于点对点的通讯)源IP地址:发送包的IP地址;目的IP地址:接收包的IP地址;源端口:源系统上的连接的端口;目的端口:目的系统上的连接的端口。  TCP是因特网中的传输层协议,使用三次握手协议建立连接。当主动方发出SYN连接请求后,等待对方回答SYN,ACK。这种建立连接的方法可以防止产生错误连接,TCP使用的流量控制协议是可变大小的滑动窗口协议。第一次握手:建立连接时,客户端发送SYN包(SEQ=x)到服务器,并进入SYN_SEND状态,等待服务器确认。第二次握手:服务器收到SYN包,必须确认客户的SYN(ack=x+1),同时自己也送一个SYN包(SEQ=y),即SYN+ACK包,此时服务器进入SYN_RECV状态。第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入Established状态,完成三次握手。

ACK:为TCP报文段首部中的“ACK字段”,置1时该报文段为确认报文段。
ack:为TCP报文段首部中“确认号字段”的具体数值。ack=x+1说明服务器希望客户端下次发来的报文段的第一个数据字节为序号=x+1的字节;ack=y+1说明客户端希望服务器下次发来的报文段的第一个数据字节为序号=y+1的字节

1> 封包详细信息

A. 第一行,Frame 36838 指的是要发送的数据块,其中,所抓帧的序号为36838,捕获字节数等于传送字节数:70字节;

B. 第二行,以太网,有线局域网技术,是数据链路层。源Mac地址为88:5d:90:00:00:25;目标Mac地址为00:25:22:b5:b9:92;

C. 第三行,IPV4协议,也称网际协议,是网络层;源IP地址为192.168.21.175;目标IP地址为192.168.21.156;

D. 第四行,TCP协议,也称传输控制协议,是传输层;源端口(10086);目标端口(50132);序列号(1361);ACK是TCP数据包首部中的确认标志,对已接收到的TCP报文进行确认,值为1表示确认号有效;长度为16;

E. 第五行,数据共有16字节

2> Frame信息分析

A. Arrival Time:到达时间,值为Jan 14, 2017 08:52:56.239204000

B. EPoch Time:信息出现时间,值为1484355176.239204000秒

C. [ Time delta from previous captured frame: 0.001472000 seconds] :与之前捕获的数据帧时间差:0.001472000秒;

     [Time delta from previous displayed frame: 0.001472000 seconds]:与之前显示的帧时间差: 0.001472000秒;

     [Time since reference or first frame: 1278.276505000 seconds]:距参考帧或第一帧的时间差:1278.276505000秒;

D. Frame Number: 36838,帧编号为36838;

E. Frame Length: 70 bytes (560 bits),帧长度为70字节;

     Capture Length: 70 bytes (560 bits),捕获到的长度为70字节;

F. [Frame is marked: False],帧标记:无;

     [Frame is ignored: False],帧被忽略:无;

G. [Protocols in frame: eth:ip:tcp:data],协议帧:eth(以太网)、IP、tcp、data

H. [Coloring Rule Name: TCP],色彩规则名称:TCP;

     [Coloring Rule String: tcp],色彩规则字符串:TCP;

3> EthernetⅡ信息分析

A. Destination: AsrockIn_b5:b9:92 (00:25:22:b5:b9:92),目标Mac地址为00:25:22:b5:b9:92

B. Source: 88:5d:90:00:00:25 (88:5d:90:00:00:25),源Mac地址为88:5d:90:00:00:25

C. Type: IP (0x0800),类型是IP数据包

4> IPv4 协议信息分析

A. Version: 4,IP协议版本为IPv4;

     Header length: 20 bytes,头部数据长度为20字节;

B. Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport)),区分的服务领域:0x00 (默认的是DSCP:0x00);

C. Flags: 0x02 (Don't Fragment),不支持分组;

     Fragment offset: 0,分组偏移量为0; 

D. Time to live: 64,TTL,生存时间为64,TTL通常表示包在被丢弃前最多能经过的路由器个数,当数据包传输到一个路由器之后,TTL就自动减1,如果减到0了还没有传送到目标主机,那么就自动丢失。

E. Header checksum: 0xcebd [correct],头部校验和

F. Source: 192.168.21.175 (192.168.21.175),源IP地址为192.168.21.175;

     Destination: 192.168.21.156 (192.168.21.156),目标IP地址为192.168.21.156;

5> Trasmission Control Protocol信息分析

其中,对应的TCP首部的数据信息

A. 端口号,数据传输的16位源端口号和16位目标端口号(用于寻找发端和收端应用进程);

B. 相对序列号,该数据包的相对序列号为1361(此序列号用来确定传送数据的正确位置,且序列号用来侦测丢失的包);下一个数据包的序列号是1377;

C. Acknowledgment number是32位确认序列号,值等于1表示数据包收到,确认有效;

D. 手动的数据包的头字节长度是20字节;

E. Flags,含6种标志;ACK:确认序号有效;SYN:同步序号用来发起一个连接;FIN:发端完成发送任务;RST:重新连接;PSH:接收方应该尽快将这个报文段交给应用层;URG:紧急指针(urgentpointer)有效;

F. window,TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端正期望接收的字节。窗口大小是一个16bit字段,因而窗口大小最大为65536字节,上面显示窗口大小为1825字节;

G. Checksum,16位校验和,检验和覆盖了整个的TCP报文段,由发端计算和存储,并由收端进行验证;

6> Data信息分析

A.  TCP 报文段中的数据(该部分是可选的),长度为16字节;

2、Http报文

链路层的信息上是以帧的形式进行传输的,帧封装了应用层、传输层、网络层的数据。而Wireshark抓到的就是链路层的一帧;

1> 封装包详细信息

A. 第一行,Frame 12411 指的是要发送的数据块,其中,所抓帧的序号为12411,捕获字节数等于传送字节数:233字节;

B. 第二行,以太网,有线局域网技术,是数据链路层。源Mac地址为24:69:68:6b:78:96;目标Mac地址为00:25:22:b5:b9:92;

C. 第三行,IPV4协议,也称网际协议,是网络层;源IP地址为220.181.57.234;目标IP地址为192.168.21.156;

D. 第四行,TCP协议,也称传输控制协议,是传输层;源端口(80);目标端口(53985);序列号(1);ACK是TCP数据包首部中的确认标志,对已接收到的TCP报文进行确认,值为1表示确认号有效;长度为179;

E. 第五行,Http协议,也称超文本传输协议,是应用层

2> Http请求报文分析

报文分析:

在抓包分析过程中还发现了另外一些http请求报文中所特有的首部字段名,比如下面http请求报文中橙黄色首部字段名:

3> Http响应报文分析

报文分析:

3、 DNS报文

1> 封包详细信息

A. 第一行,Frame 12237 指的是要发送的数据块,其中,所抓帧的序号为12237,捕获字节数等于传送字节数:133字节;

B. 第二行,以太网,有线局域网技术,是数据链路层。源Mac地址为24:69:68:6b:78:96;目标Mac地址为00:25:22:b5:b9:92;

C. 第三行,IPV4协议,也称网际协议,是网络层;源IP地址为192.168.211.254;目标IP地址为192.168.211.84;

D. 第四行,UDP协议,是传输层;源端口domain(53);目标端口(65219);

E. 第五行,DNS协议,应用层

2> DNS 查询报文

报文分析:

3> DNS响应报文

报文分析:

4、Ping


http://chatgpt.dhexx.cn/article/0iv3sBC6.shtml

相关文章

抓包分析数据(Charles以及HttpCanary)

在开发小程序时,我们经常需要检查线上的请求,但是小程序并没有提供这方面的入口,本文为大家详细说一下我工作中使用到的关于抓包的经验,包括pc配合手机以及直接用手机抓包 一.pc配合手机实现抓包(Charles)…

wireshark抓包分析TCP数据包

1、直接从TCP的三次握手开始说起 三次握手就是客户与服务器建立连接的过程 客户向服务器发送SYN(SEQx)报文,然后就会进入SYN_SEND状态服务器收到SYN报文之后,回应一个SYN(SEQy)ACK(ACKx1&…

wireshark抓ping数据包以及简单分析

目录 相关知识 1.Ping原理 2.ICMP报文协议 3.wireshark 一、wireshark抓数据包 二、报文分析 三、总结 相关知识 1.Ping原理 Ping是一句DOS 命令,一般用于检测网络通与不通 ,也叫时延,其值越大,速度越慢 PING (Packet Inte…

wireshark抓包数据:理解与分析

注明:本文为原创文章,转载请注明出处。参考文章见本文末尾。 wireshark是一个非常好用的抓包工具,本文根据平时抓包经验,对之前wireshark抓包的一些常见知识点进行了整理。 有不当之处,欢迎指正 1.SYN,F…

WireShark抓包后数据分析

在分析数据之前,我们先了解一下我们传输数据的结构体系,如下图: 这是两种体系,我们常用的一般都是TCP/IP体系结构。 TCP/IP体系架构分析 不难发现,TCP/IP体系中包含着很多我们熟悉的协议,比如说&#xff1…

Wireshark --> 抓包(网络分析)工具

前言 贴一张wireshark抓包的总图,便于理解分析网络分层 ​ 为了让大家更容易「看得见」 TCP,我搭建不少测试环境,并且数据包抓很多次,花费了不少时间,才抓到比较容易分析的数据包。 接下来丢包、乱序、超时重传、…

Wireshark抓包工具使用以及数据包分析

多年之后,愿你有清风与烈酒,也有人是你的归途。 打开Wireshark抓包工具开始抓包会看到如下展开内容: 这里我是对wlan进行抓包,192.168.2.112是我当前wifi的ip地址。 点击某个包,可以查看具体内容,差不多刚…

使用wireshark抓网络报文(抓包)并分析其中数据

如何使用wireshark抓网络报文(抓包) 1、 物理层数据帧2、 数据链路层以太网帧头部信息3、 互联网层 IP 包头部信息4、 传输层 TCP 数据段头部信息 本文包内容分析转载自下午茶的芬芳,感谢作者的分享。 网络下载好wireshark打开软件按下开始捕…

wireshark抓包分析数据怎么看 wireshark使用教程

大家都知道Wireshark是非常流行且知名的网络抓包数据分析工具,可以截取各种网络数据包,并显示数据包详细信息,常用于开发测试过程各种问题定位、网络故障排查等情况。但是很多网友不清楚如何使用Wireshark抓包看数据,下面IT备忘录…

Wireshark网络抓包分析

目录 1. 以太网协议头(数据链路层) -- 14byte 2. IP数据头(网络层) -- 20byte 3. ARP抓包分析 3.1 ARP介绍 3.2 报文格式 3.3 抓包分析 3.3.1 先arp -d把arp表清空。 3.3.2 过滤ARP协议的数据包 3.3.3 Ping 目标IP 3.3.4 第一个数据包请求分析 3.3.5 第二个数据包应…

利用python简单分析抓包数据

利用python简单分析抓包数据 wireshark的数据 先读一行看看长啥样 import json data_file rE:\download\data.json with open(data_file,r,encodingutf8) as f:data_list json.loads(f.read())print(data_list[0])用格式化工具看 完整代码&最终结果 import jsondata_…

wireshark抓包分析ping数据包

目录 1.抓取数据包 2.ping request数据包解析 2.1 ICMP 2.2 传输层 2.3 以太帧 2.3 数据链路层 3. ping reply数据包解析 1.抓取数据包 先用管理员权限打开WireShark应用,并在条件过滤栏输入“icmp”。打开cmd,输入:ping www.baidu.co…

Wireshark-----抓包分析

目录 一、Wireshark简介 二、安装与使用 三、抓包分析 1.初次抓包 2.捕获选项设置 3.ARP协议抓包分析 4.IP协议抓包分析 5.TCP协议抓包分析 6.UDP协议抓包分析 7.ICMP协议抓包分析 参考文献 一、Wireshark简介 Wireshark是一款世界范围最广、最好用的网络封包分析软件…

计算机网络——数据包抓取与分析

数据包抓取与分析 目录 一、实验目的 二、实验内容 三、实验环境 四、实验步骤与过程 一、实验目的 学习安装、使用协议分析软件,掌握基本的数据报捕获、过滤和协议的分析技巧,能对抓取数据包进行分析。 二、实验内容 协议分析软件的安装和使用、学…

抓包与分析

(一)作业目的 (1)了解网络通信的分层实现过程,了解不同层次PDU的逐层封装与解封过程; (2)了解数据通信的过程,进一步认知协议的构成与通信过程,进而对TCP/IP分…

Wireshark抓包分析基础

Wireshark抓包分析 (仅作为个人笔记,如有雷同,请联系删除。。) 下载:https://www.wireshark.org/#download 1、设置时间格式:视图–>时间显示格式 2、设置解析:视图–>Name Resoluti…

Java抓包分析四(基于jnetpcap进行抓包)——分析Http请求数据包

在上篇文章中Java抓包分析三(基于jnetpcap进行抓包)——抓取Http请求数据包,我们讲解了TCP三次握手的过程和如何抓取Http数据包,但是我们并没有进行一个数据分析,接下来这篇文章我们将要开始对Http抓取的数据报进行深入…

【HTTP】Fiddler(二) - 使用Fiddler做抓包分析

上文( http://blog.csdn.net/ohmygirl/article/details/17846199 )中已经介绍了Fiddler的原理和软件界面。本文主要针对Fiddler的抓包处理。 Fiddler抓取HTTP请求。 抓包是Fiddler的最基本的应用,以本博客为例,启动Fiddler之后,在浏览器中输入http://blog.csdn.net/ohmygi…

MySQL索引优化实战EXPLAIN解析

先来介绍一下具体的业务场景 当用户登录后,需要查看能够学习的课程,不同的用户看到的课程是不同的,课程存在权限,权限是被下面lesson_user_permissions表控制的,其中sys_user_id 和 lesson_id 作为联合主键 另外还有一…

MySQL索引优化面试题

mysql索引优化熊大注意我们是以innodb为例 创建表sql如下: CREATE TABLE user (id bigint(11) NOT NULL AUTO_INCREMENT COMMENT 主键,age int(10) NOT NULL COMMENT 年龄,name varchar(100) NOT NULL COMMENT 姓名,card_no varchar(64) CHARACTER SET utf8 COLLATE utf8_gen…