插值算法总结

article/2025/9/30 6:13:55

1、最邻近元法

  这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的值 f(i+u, j+v) 如下图所示:

 

 

如果(i+u, j+v)落在A区,即u<0.5, v<0.5,则将左上角象素的灰度值赋给待求象素,同理,落在B区则赋予右上角的象素灰度值,落在C区则赋予左下角象素的灰度值,落在D区则赋予右下角象素的灰度值。

最邻近元法计算量较小,但可能会造成插值生成的图像灰度上的不连续,在灰度变化的地方可能出现明显的锯齿状。

 

2、双线性内插法

双线性内插法是利用待求象素四个邻象素的灰度在两个方向上作线性内插,如下图所示:

 

 

对于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度变化为线性关系,则有:

      f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j)

同理对于 (i+1, j+v) 则有:

                  f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j)

从f(i, j+v) 到 f(i+1, j+v) 的灰度变化也为线性关系,由此可推导出待求象素灰度的计算式如下:

                  f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) + u * v * f(i+1, j+1)

双线性内插法的计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结果基本令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓可能会有一点模糊。

 

3、三次内插法

该方法利用三次多项式S(x)求逼近理论上最佳插值函数sin(x)/x, 其数学表达式为:

待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到,如下图:

 

 

待求像素的灰度计算式如下:

 

f(x, y) = f(i+u, j+v) = ABC

 

其中: 

 

三次曲线插值方法计算量较大,但插值后的图像效果最好。


插值方法总结:                                                                                                                                                       

“Inverse Distance to a Power(反距离加权插值法)”、
“Kriging(克里金插值法)”、
“Minimum Curvature(最小曲率)”、
“Modified Shepard's Method(改进谢别德法)”、
“Natural Neighbor(自然邻点插值法)”、
“Nearest Neighbor(最近邻点插值法)”、
“Polynomial Regression(多元回归法)”、
“Radial Basis Function(径向基函数法)”、
“Triangulation with Linear Interpolation(线性插值三角网法)”、
“Moving Average(移动平均法)”、
“Local Polynomial(局部多项式法)”

1、距离倒数乘方法
距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所 有权重的总和等于1.0。当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为 0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结 点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法
克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型 和矿块效应。

3、最小曲率法
最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法
多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类型。多元回归实际上不是插值器,因为它并不试图预测未知的 Z 值。它实际上是一个趋势面分析作图程序。
使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。参数设置是指定多项式方程中 X 和 Y组元的最高方次 。

5、径向基本函数法
径向基本函数法是多个数据插值方法的组合。根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。所有径向基本函数法都 是准确的插值器,它们都要为尊重你的数据而努力。为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。你可以指定的函数类似于克里金 中的变化图。当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。

6、谢别德法
谢别德法使用距离倒数加权的最小二乘方的方法。因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。谢别德法可以是一个准确或圆滑插值器。
在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。当你增加圆滑参数的值时,圆滑的效果越好。

7、三角网/线形插值法
三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。
每一个三角形定义了一个覆盖该三角形内格网结点的面。三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。给定三角形内的全部结点都要受到该三角形的表面的限制。因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。


8.自然邻点插值法
自然邻点插值法(NaturalNeighbor)是Surfer7.0才有的网格化新方法。自然邻点插值法广泛应用于一些研究领域中。其基本原理是对于 一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重, 待插点的权重和目标泰森多边形成比例。实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。同时,自然邻点插值法 在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。

9.最近邻点插值法
最近邻点插值法(NearestNeighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分 析法是荷兰气象学家A.H.Thiessen提出的一种分析方法。最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和地理分析中经常采 用泰森多边形进行快速的赋值。实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一 个网格节点的最邻点值作为待的节点值。当数据已经是均匀间隔分布,要先将数据转换为SURFER的网格文件,可以应用最近邻点插值法;或者在一个文 件中,数据紧密完整,只有少数点没有取值,可用最近邻点插值法来填充无值的数据点。有时需要排除网格文件中的无值数据的区域,在搜索椭圆 (SearchEllipse)设置一个值,对无数据区域赋予该网格文件里的空白值。设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数 据网格节点都被赋予空白值。在使用最近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可设置网格间隔和XYZ数据的数据点之间的间 距相等。最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它对填充无值数据的区域很有效。


Reference                                                                                                                      

http://blog.csdn.net/coy_wang/article/details/5027872

http://blog.sina.com.cn/s/blog_6e51df7f0100vb4b.html


http://chatgpt.dhexx.cn/article/xM9pYZLO.shtml

相关文章

插值算法基本原理

插值&#xff1a;数据处理的手段 将缺失数据补全处理 线性内插 拉格朗日插值法 牛顿插值 拟合&#xff1a;预测&#xff0c;寻找规律的手段 是插值的外延 插值算法&#xff1a;使用在现有的数据极少&#xff0c;不足以支撑分析的进行&#xff0c;这时就需要使用一些数学方法…

插值算法——分段线性插值(1)

首先&#xff0c;科普一下插值的含义&#xff1a;在离散数据的基础上补插连续函数&#xff0c;使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数逼近的重要方法&#xff0c;利用它可通过函数在有限个点处的取值状况&#xff0c;估算出函数在其他点处的近似值。 插…

Matlab实现常见的插值算法

本文介绍如何使用 Matlab 实现常见的插值算法&#xff1a;分段三次埃尔米特插值和三次样条插值。 分段三次埃尔米特插值 (1) pchip&#xff08;x, y, new_x&#xff09;函数表示分段三次埃尔米特插值&#xff0c;x表示已有的数据 点&#xff0c;y表示数据点代表的纵坐标值&am…

图像插值算法及其实现

sensor、codec、display device都是基于pixel的&#xff0c;高分辨率图像能呈现更多的detail&#xff0c;由于sensor制造和chip的限制&#xff0c;我们需要用到图像插值&#xff08;scaler/resize&#xff09;技术&#xff0c;这种方法代价小&#xff0c;使用方便。同时&#x…

插值算法(数学建模学习)

本系列参考清风老师的数学建模课程 插值算法 一、算法介绍 &#xff08;一&#xff09;算法引入 对于数据量少到不足以去分析问题&#xff0c;而必须生成一些合理的数据的情况要用到插值算法。 &#xff08;二&#xff09;算法详解 &#xff08;1&#xff09;定义 设函数 …

MATLAB-插值算法汇总

前言 数模比赛中常常需要对数据进行分析&#xff0c;当数据不足时就需要补充数据&#xff0c;所用到的方法就是插值法。本文汇总了一些常用的插值算法。 Hermite插值 埃尔米特插值(Hermite)会在给定的节点处&#xff0c;要求插值多项式的函数值与原函数值相同&#xff0c;同时…

第三讲 插值算法

数模比赛中&#xff0c;常常需要根据已知的函数点进行数据&#xff0c;模型的处理和分析&#xff0c;而有时候现有的数据是极少的&#xff0c;不足以支撑分析的进行&#xff0c;这时就需要使用一些数学的方法&#xff0c;“模拟产生”一些新的但又比较靠谱的值来满足需求&#…

opencv中插值算法详解

导读 做图像处理的同学应该经常都会用到图像的缩放&#xff0c;我们都知道图片存储的时候其实就是一个矩阵&#xff0c;所以在对图像进行缩放操作的时候&#xff0c;也就是在对矩阵进行操作&#xff0c;如果想要将图片放大&#xff0c;这里我们就需要用到过采样算法来扩大矩阵…

几种插值算法对比

1.拉格朗日插值 2.牛顿插值 3.分段线性插值 4. 分段三次埃尔米特插值 5.样条插值函数 6.五种样条函数比较 所以&#xff0c; 7. 五种插值方法的实际应用

转载:一文讲解图像插值算法原理

最近在研究插值算法&#xff0c;看到这篇CSDN博主Datawhale学习介绍的博文&#xff0c;觉得介绍得挺不错&#xff0c;转载过来。原文地址&#xff1a;https://blog.csdn.net/Datawhale/article/details/105697264 寄语&#xff1a;本文梳理了最近邻插值法、双线性插值法和三次…

插值算法

插值&#xff0c;通俗来说当在一个离散的事件中&#xff0c;想知道某一个位置确定的值时&#xff0c;就可以利用插值方式计算得到&#xff0c;即利用已知数据估计未知位置数值。插值的方式有很多&#xff0c;下面介绍几种常用的插值方式。 一、最近邻插值(Nearest Neighbour …

几种插值算法对比研究

[研究内容] 目前比较常用的几种插值算法 [正文] 目前比较常用的插值算法有这么几种&#xff1a;最邻近插值&#xff0c;双线性二次插值&#xff0c;三次插值&#xff0c; Lanczos插值等等&#xff0c;今天我们来对比一下这几种插值效果的优劣。 1&#xff0c;最邻近插值 最…

【3.0】 常见的插值算法

插值算法的概念一维插值问题一般插值多项式的原理拉格朗日插值法牛顿插值法埃尔米特插值法分段 三次埃尔米特插值和分段三次样条插值&#xff08;常用&#xff0c;附代码&#xff09; 一、插值算法的概念 数学建模比赛中&#xff0c;常常需要根据已知的函数点进行数据、模型的…

常用的三种插值算法

在做数字图像处理时&#xff0c;经常会碰到小数象素坐标的取值问题&#xff0c;这时就需要依据邻近象素的值来对该坐标进行插值。比如做图像的几何校正&#xff0c;也会碰到同样的问题。 1、最近邻插值法&#xff08;Nearest Neighbour Interpolation&#xff09; 这是最简单的…

数学建模常见算法:插值算法

目录 一、插值的定义 二、拉格朗日多项式插值&#xff08;Lagrange插值&#xff09; 三、龙格现象&#xff08;Runge phenomenon&#xff09; 四、牛顿插值&#xff08;Newton&#xff09; 五、分段线性插值 六、埃尔米特插值(Hermite 插值) 七、三次样条插值 八、插值…

图像处理之-----插值算法

插值算法是图像处理中最基本的算法&#xff0c;首先我们先了解一下什么是插值算法&#xff0c;以及插值算法在图像处理过程中的应用。 1、什么是插值 Interpolation is a method of constructing new data points within the range of a discrete set of known data points. …

操作系统 读者写者问题的实现(C++ 读者优先、写者优先)

通过信号量机制和相应的系统调用&#xff0c;用于线程的互斥和同步&#xff0c;实现读者写者问题。利用信号量机制&#xff0c;实现读者写者问题。 在windows 10环境下&#xff0c;创建一个控制台进程&#xff0c;此进程包含n个线程。用这n个线程来表示n个读者或写者。每个线程…

信号量机制实现读者写者问题(思路剖析+Java代码实现+验证)

写在前面&#xff1a; Java中&#xff1a; 我们用这样的代码新建一个信号量&#xff1a;Semaphore mutex new Semaphore(1);P操作(wait)的代码为&#xff1a;mutex.acquire();V操作(signal)的代码为&#xff1a;mutex.release(); 本文章的内容&#xff1a; 读者写者问题&#…

Java实现读者写者问题--读者优先

作者&#xff1a;凌杰林 简介 临界资源&#xff1a;同一时间只能由一个进程访问的资源 临界区&#xff1a;访问临界资源的代码段 读者写者问题&#xff1a;存在一个多个进程共享的数据区&#xff08;临界资源&#xff09;&#xff0c;该数据区可以是一个文件或者一块内存空间…

操作系统实验:读者写者问题

一&#xff0e;实验目的&#xff1a; 通过实现读者写者问题理解进程及信号量的概念 二&#xff0e;实验要求&#xff1a; 创建一个控制台进程&#xff0c;此进程包含n个线程。用这n个线程来表示n个读者或写者。每个线程按相应测试数据文件的要求进行读写操作。用信号量机制分…