PASCAL VOC数据集分析

article/2025/10/29 18:42:19
PASCAL VOC数据集分析
PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。
本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。
在这里采用PASCAL VOC2012作为例子。下载地址为:点击打开链接。(本文中的系统环境为ubuntu14.04)
下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:

其中在图像物体识别上着重需要了解的是Annotations、ImageSets和JPEGImages。

JPEGImages
JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。
这些图像都是以“年份_编号.jpg”格式命名的。
图片的像素尺寸大小不一,但是横向图的尺寸大约在500*375左右,纵向图的尺寸大约在375*500左右,基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300*300或是500*500,所有原始图片不能离这个标准过远。)
这些图像就是用来进行训练和测试验证的图像数据。

Annotations

Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。
xml文件的具体格式如下:(对于2007_000392.jpg)
<annotation><folder>VOC2012</folder>                           <filename>2007_000392.jpg</filename>                               //文件名<source>                                                           //图像来源(不重要)<database>The VOC2007 Database</database><annotation>PASCAL VOC2007</annotation><image>flickr</image></source><size>					                           //图像尺寸(长宽以及通道数)						<width>500</width><height>332</height><depth>3</depth></size><segmented>1</segmented>		                           //是否用于分割(在图像物体识别中01无所谓)<object>                                                           //检测到的物体<name>horse</name>                                         //物体类别<pose>Right</pose>                                         //拍摄角度<truncated>0</truncated>                                   //是否被截断(0表示完整)<difficult>0</difficult>                                   //目标是否难以识别(0表示容易识别)<bndbox>                                                   //bounding-box(包含左下角和右上角xy坐标)<xmin>100</xmin><ymin>96</ymin><xmax>355</xmax><ymax>324</ymax></bndbox></object><object>                                                           //检测到多个物体<name>person</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>198</xmin><ymin>58</ymin><xmax>286</xmax><ymax>197</ymax></bndbox></object>
</annotation>
对应的图片为:
ImageSets

ImageSets存放的是每一种类型的challenge对应的图像数据。
在ImageSets下有四个文件夹:
其中Action下存放的是人的动作(例如running、jumping等等,这也是VOC challenge的一部分)
Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)
Main下存放的是图像物体识别的数据,总共分为20类。
Segmentation下存放的是可用于分割的数据。

在这里主要考察Main文件夹。
Main文件夹下包含了20个分类的***_train.txt、***_val.txt和***_trainval.txt。
这些txt中的内容都差不多如下:
前面的表示图像的name,后面的1代表正样本,-1代表负样本。
_train中存放的是训练使用的数据,每一个class的train数据都有5717个。
_val中存放的是验证结果使用的数据,每一个class的val数据都有5823个。
_trainval将上面两个进行了合并,每一个class有11540个。
需要保证的是train和val两者没有交集,也就是训练数据和验证数据不能有重复,在选取训练数据的时候 ,也应该是随机产生的。
SegmentationClass和SegmentationObject

这两个文件夹下保存了物体分割后的图片,在物体识别中没有用到,在这里不做详细展开。

接下来需要研究的是如何自己生成训练数据和测试数据,将在下一篇中阐述。

http://chatgpt.dhexx.cn/article/tWOa3vZe.shtml

相关文章

VOC数据集详解

VOC数据集可以用于目标检测、目标分割。 该文件夹下有三个子文件。分别为&#xff1a;ImageSets,JPEGImages,SegmentationClass JPEGImages该文件夹下一般放置原图&#xff1b; SegmentationClass存放标签文件&#xff1b; 该分割结果图是一个灰度图&#xff0c;例如属于飞机部…

VOC数据集介绍及构建自己的VOC格式目标检测数据集

文章目录 1、安装标注工具1.1 ubuntu linux 系统1.2 windows系统 2、labelimg使用方法3、标注结果文件说明3.1 Pascal VOC数据集介绍3.2 Pascal VOC格式3.3 YOLO格式说明 4、标注图片和结果文件整理4.1 Pascal VOC数据组织结构4.2 自定义数据集整理为Pascal VOC格式4.3 Pascal …

VOC数据集制作

VOC数据集制作 1 获取数据1.1 获取图片1.2 图片大小重置1.3 图片重命名 2 标记图片3 按照PascalVOC数据集的格式整理自己的数据4 划分训练集和测试集 1 获取数据 1.1 获取图片 对于数据的获取&#xff0c;可以是图片形式&#xff0c;也可以是视频形式&#xff0c;但最终将转化…

VOC数据集介绍

1、VOC数据集下载 ubuntu系统下打开终端输入命令即可下载 wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/…

Voc数据集简述

文章目录 一、了解VOC1.1 voc数据集下载 二、VOC文件结构2.1 Annotations2.2 ImageSets2.3 JPEGImages2.4 SegmentationClass2.5 SegmentationObject 三、目标检测任务四、语义分割任务五、实例分割任务六、类别索引与名称对应关系 一、了解VOC 是一种数据集的格式——VOC格式…

【DataWhale Obj Dec Task01】目标检测基础

目标检测的基本概念 报名参加datawhale的目标检测组队学习&#xff0c;虽然做objdec有一段时间了&#xff0c;但是还没有系统的记录过自己的学习历程&#xff0c;就借此机会记录一下自己的感想和经历吧&#xff0c;就当是记笔记了。 理解 目标检测实际上也是一种分类算法&am…

【目标检测】VOC数据集介绍

数据集介绍 VOC数据集是目标检测领域最常用的标准数据集之一&#xff0c;在类别上可以分为4大类&#xff0c;20小类 Annotations 进行 detection 任务时的标签文件&#xff0c;xml 形式&#xff0c;文件名与图片名一一对应ImageSets 包含三个子文件夹 Layout、Main、Segmentat…

VOC数据集简介与制作

一、VOC数据集简介 1.1 VOC的任务 PASCAL VOC 挑战赛主要有 Object Classification &#xff08;分类&#xff09;、Object Detection&#xff08;检测&#xff09;、Object Segmentation&#xff08;分割&#xff09;、Human Layout、Action Classification 这几类子任务。 …

详解 VOC 数据集

本视频配套视频链接&#xff1a;https://www.bilibili.com/video/BV1ZL4y1p7Cz/ 我们先来介绍一个经典的数据集&#xff1a;VOC 数据集。Visual Object Class 的首字母缩写&#xff0c;它的官方地址为 http://host.robots.ox.ac.uk/pascal/VOC/。 虽然现在大家更倾向于使用我…

测试报告编写,测试结果编写

测试报告&#xff0c;就是向整个团队告诉你的测试情况&#xff0c;以及发现一些问题说明。 所以&#xff1a; 第一步&#xff0c;先告诉别人&#xff0c;你的测试结果&#xff0c;测试结果只有两种&#xff0c;测试通过/测试未通过。 第二步&#xff0c;写出这个需求的提测的…

软件测试项目测试报告总结

测试计划概念&#xff1a;就在软件测试工作实施之前明确测试对象&#xff0c;并且通过资源、时间、风险、测试范围和预算等方面的综合分析和规划&#xff0c;保证有效的实施软件测试。 需求挖掘的6个方面&#xff1a; 1、输入方面 2、处理方面 3、结果输出方面 4、性能需求…

稳定性测试-几点总结

混合场景业务比例&#xff1a; 稳定性测试一般基于混合场景进行压测&#xff0c;业务比例由项目组人员给出。&#xff08;最好基于线上业务调用量情况进行统计&#xff0c;但大部分系统没有该数据&#xff0c;那就由他们自己拍脑袋吧&#xff09; PS: JMeter控制业务比例用 th…

测试总结报告模板

1. 编写目的 [简述本报告的目的。例如&#xff1a;本测试报告为XX项目的测试总结报告&#xff0c;目的在于总结测试阶段的测试及分析测试结果&#xff0c;描述系统是否符合需求&#xff08;或达到XX功能目标&#xff09;&#xff0c;同时对软件质量进行相关的评估&#xff0c;…

性能测试结果分析结果

在做性能测试的时候&#xff0c;在使用LR或者jmeter等一些性能测试工具测试执行结束后&#xff0c;首先要做的是判断采集到的结果数据是否真实有效。多数的性能测试场景都要迭代的进行测试&#xff0c;因此很多测试结果本身就不能反应问题&#xff0c;深入分析这样的结果没啥意…

主观评价测试

一、静物测试 1.测试目的&#xff1a;测试IPC在室内正常照度场景下的效果 2.测试设备&#xff1a;色温照度计&#xff0c;激光红外测距仪 3.测试环境&#xff1a;在不同色温环境下A,TL84 CWF D65对静物场景测试图卡和人物进行拍摄&#xff0c;观察图像和人物效果&#xff08…

测试总结的重要性

测试总结很重要&#xff0c;包括项目整理的总结、个人的总结、小组的总结;做项目总结&#xff0c;是为了梳理整个过程&#xff0c;明确问题和找到原因&#xff0c;改进整个流程和推进项目状态越来越好。 自己目前所做的是项目的总结&#xff0c;会针对三方做一个总结&#xff0…

测试总结该怎么写...

最近参与了几次面试&#xff0c;面试者的简历中都会提及&#xff1a;需求或者版本测试结束后会进行版本总结&#xff0c;而不仅仅是提供一份测试报告。 于是特意追问了一下&#xff0c;总结中都包含什么内容&#xff0c;答复上基本都是围绕此次测试过程中发现的BUG数量以及修复…

如何分析测试结果和评估测试工作的质量

软件测试中每一项测试活动都会产生测试结果&#xff0c;通过测试结果来评估产品的质量体现了测试的目的和价值。而通过测试结果评估测试工作本身的质量也非常重要&#xff0c;能让我们及时发现测试中存在的问题&#xff0c;并及时改正&#xff0c;是测试工作进行持续改进的基础…

测试报告怎么写?

测试报告是一份描述软件的测试过程、测试环境、测试范围、测试结果的文档&#xff0c;用来分析总结系统存在的风险以及测试结论。 &#xff08;1&#xff09;测试过程测试过程需要对测试人员、测试时间、测试地点、测试版本等信息进行描述。其他测试过程中发生的关键信息均可在…

评测报告的结论如何写?

背景 最近组内同学开始编写评测报告&#xff0c;报告中的结论中存在以下几种情况&#xff1a; 1.结论是一大段文字&#xff0c;像散文一样 2.评测数据结果中存在多个数据维度&#xff0c;将所有的数据结果都罗列到结论中&#xff0c;主要信息不突出 3.只是将评测数据罗列到…