OpenCV——Canny边缘检测(cv2.Canny())

article/2025/9/23 19:23:38

Canny边缘检测

Canny 边缘检测是一种使用多级边缘检测算法检测边缘的方法。1986 年,John F. Canny 发
表了著名的论文 A Computational Approach to Edge Detection,在该论文中详述了如何进行边缘
检测。

Canny()边缘检测步骤

Canny 边缘检测分为如下几个步骤:
步骤 1:去噪。噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉。
步骤 2:计算梯度的幅度与方向。
步骤 3:非极大值抑制,即适当地让边缘“变瘦”。
步骤 4:确定边缘。使用双阈值算法确定最终的边缘信息。
下面对上述步骤分别进行简单的介绍。

1. 应用高斯滤波去除图像噪声

由于图像边缘非常容易受到噪声的干扰,因此为了避免检测到错误的边缘信息,通常需要对图像进行滤波以去除噪声。滤波的目的是平滑一些纹理较弱的非边缘区域,以便得到更准确的边缘。在实际处理过程中,通常采用高斯滤波去除图像中的噪声。
在滤波过程中,我们通过滤波器对像素点周围的像素计算加权平均值,获取最终滤波结果。滤波器的大小也是可变的,高斯核的大小对于边缘检测的效果具有很重要的作用。滤波器
的核越大,边缘信息对于噪声的敏感度就越低。不过,核越大,边缘检测的定位错误也会随之增加。通常来说,一个 5×5 的核能够满足大多数的情况。

2. 计算梯度

梯度的方向与边缘的方向是垂直的。
边缘检测算子返回水平方向的Gx和垂直方向的Gy。梯度的幅度𝐺和方向𝛩(用角度值表示)为:
在这里插入图片描述
式中,atan2(•)表示具有两个参数的 arctan 函数。
梯度的方向总是与边缘垂直的,通常就近取值为水平(左、右)、垂直(上、下)、对角线(右上、左上、左下、右下)等 8 个不同的方向。
因此,在计算梯度时,我们会得到梯度的幅度和角度(代表梯度的方向)两个值。
图 10-2 展示了梯度的表示法。其中,每一个梯度包含幅度和角度两个不同的值。为了方便观察,这里使用了可视化表示方法。例如,左上角顶点的值“2↑”实际上表示的是一个二元数对“(2, 90)”,表示梯度的幅度为 2,角度为 90°。
在这里插入图片描述

3. 非极大值抑制

在获得了梯度的幅度和方向后,遍历图像中的像素点,去除所有非边缘的点。在具体实现时,逐一遍历像素点,判断当前像素点是否是周围像素点中具有相同梯度方向的最大值,并根据判断结果决定是否抑制该点。通过以上描述可知,该步骤是边缘细化的过程。针对每一个像
素点:
 如果该点是正/负梯度方向上的局部最大值,则保留该点。
 如果不是,则抑制该点(归零)

4. 应用双阈值确定边缘

完成上述步骤后,图像内的强边缘已经在当前获取的边缘图像内。但是,一些虚边缘可能也在边缘图像内。这些虚边缘可能是真实图像产生的,也可能是由于噪声所产生的。对于后者,必须将其剔除。
设置两个阈值,其中一个为高阈值 maxVal,另一个为低阈值 minVal。根据当前边缘像素的梯度值(指的是梯度幅度,下同)与这两个阈值之间的关系,判断边缘的属性。具体步骤为:
(1)如果当前边缘像素的梯度值大于或等于 maxVal,则将当前边缘像素标记为强边缘。
(2)如果当前边缘像素的梯度值介于 maxVal 与 minVal 之间,则将当前边缘像素标记为虚
边缘(需要保留)。
(3)如果当前边缘像素的梯度值小于或等于 minVal,则抑制当前边缘像素。
在上述过程中,我们得到了虚边缘,需要对其做进一步处理。一般通过判断虚边缘与强边缘是否连接,来确定虚边缘到底属于哪种情况。通常情况下,如果一个虚边缘:
 与强边缘连接,则将该边缘处理为边缘。
 与强边缘无连接,则该边缘为弱边缘,将其抑制。

Canny 函数及使用

OpenCV 提供了函数 cv2.Canny()来实现 Canny 边缘检测,其语法形式如下:

edges = cv.Canny( image, threshold1, threshold2[, apertureSize[, L2gradient]])

其中:
 edges 为计算得到的边缘图像。
 image 为 8 位输入图像。
 threshold1 表示处理过程中的第一个阈值。
 threshold2 表示处理过程中的第二个阈值。
 apertureSize 表示 Sobel 算子的孔径大小。
 L2gradient 为计算图像梯度幅度(gradient magnitude)的标识。其默认值为 False。如果为 True,则使用更精确的 L2 范数进行计算(即两个方向的导数的平方和再开方),否则使用 L1 范数(直接将两个方向导数的绝对值相加)。
示例:
使用函数 cv2.Canny()获取图像的边缘,并尝试使用不同大小的 threshold1 和threshold2。

import cv2
o=cv2.imread("lena.bmp",cv2.IMREAD_GRAYSCALE)
r1=cv2.Canny(o,128,200)
r2=cv2.Canny(o,32,128)
cv2.imshow("original",o)
cv2.imshow("result1",r1)
cv2.imshow("result2",r2)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从程序运行结果可知,当函数 cv2.Canny()的参数 threshold1 和 threshold2 的值较小时,能够捕获更多的边缘信息。


http://chatgpt.dhexx.cn/article/qOaha0BZ.shtml

相关文章

(十一)Canny 边缘检测算法

Canny边缘检测算法 一、边缘检测的步骤 1)滤波: 边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感, 因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。常见的滤波方法主要有高斯滤波、均值滤波…

Canny边缘检测算法的实现

图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波。我们知道微分运算是求信号的变化率,具有加强高频分量的作用。在空域运算中来说,对图像的锐化就是计算微分。由于数字图像的离散信号,微分运…

【canny边缘检测】canny边缘检测原理及代码详解

文章目录 前言canny边缘检测算法主要流程一、高斯模糊二、图像梯度计算三、非极大值抑制四、双阈值边界跟踪 前言 本文通过介绍canny边缘检测原理与代码解析,希望能让大家深入理解canny边缘检测 canny边缘检测算法主要流程 canny边缘检测主要分为4个部分&#xff…

Canny边缘检测原理

一. Canny基本思想 1. 边缘检测 解析:边缘是对象和背景之间的边界,还能表示重叠对象之间的边界。边缘检测是图像分割的一部分,图像分割的目的是识别出图像中的区域。边缘检测是定位边缘像素的过程,而边缘增强是增加边缘和背景之…

Canny边缘检测

边缘检测发展 Canny 边缘检测是一种从不同视觉对象中提取有用结构信息并显着减少要处理的数据量的技术。它已广泛应用于各种计算机视觉系统。 Canny 发现,在不同的视觉系统上应用边缘检测的要求是比较相似的。因此,可以在各种情况下实施满足这些要求的边…

Canny边缘检测算法(python 实现)

文章目录 最优边缘准则算法实现步骤1. 应用高斯滤波来平滑(模糊)图像,目的是去除噪声2. 计算梯度强度和方向3. 应用非最大抑制技术NMS来消除边误检4. 应用双阈值的方法来决定可能的(潜在的)边界5. 利用滞后技术来跟踪边界 opencv实现Canny边缘…

左外连接和右外连接是什么样的?

1左外连接 左表的记录都会出现在结果集中,并上右表与之对应的部分,如果右表没有,使用null填充。 举例。 select * from people p left join role r p.idr.id 左外连接结果: 2、右外连接 右表的记录都会出现在结果集中&#xf…

sql左外连接和右外连接的区别

一、数据集合不同 1、左外连接:是A和B的交集再并上A的所有数据。 2、右外连接:是A和B的交集再并上B的所有数据。 二、语法不同 1、左外连接:SELECT *FROM aLEFT OUTER JOIN bON a.ageId b.id。 2、右外连接:SELECT *FROM a…

MySQL自连接和内连接和外连接_左外连接+右外连接

自连接:将一张表看作两张表 练习:查询员工id,员工姓名及其管理者的id和姓名select emp.employee_id,emp.last_name,mgr.employee_id,mgr.last_name from employees emp,employees mgr where emp.manager_id mgr.employee_id;内连接 只是把左…

SQL--左外连接(LEFT JOIN)

LEFT JOIN 关键字从左表(table1)返回所有的行,即使右表(table2)中没有匹配。如果右表中没有匹配,则结果为 NULL。 SQL LEFT JOIN 语法: SELECT column_name(s) FROM table1 LEFT JOIN table2 ON table1.c…

内连接、左连接、左外连接、右连接的区别

一:测试例子 存在如下两张表:年级与班级,表内容如下 班级表 二:内连接与自然连接 1:自然连接 对于select * from gradeclass gc where gc.grade_id in (select id from grade),其结果如下图 其查询是把符…

数据库之SQL(基本连接,内连接,左外连接,右外连接,全外连接,交叉连接,自连接)

之前的博客内容我们分享了数据表的查询与管理,但那只是针对数据库中的一个表格进行的查询管理,现在如果我们想要同时看到两个数据表中的数据的话,那要怎么办呢?采用多连接查询的方式。 SQL中有哪几种多连接的方式? 有七…

左连接、右连接、内连接、外连接简单说明

例如有两个表: test1: test2: 内连接:(inner join on)返回两个表的交集。 例如: select * from test1 a inner join test2 b on a.idb.id; 结果: 外连接:返回两个表的并集。(在此就不做截图…

MySQL之左外连接右外连接

外连接: 假设A和B表进行连接,使用外连接的话, AB两张表中有一张表是主表,一张表是副表,主要查询主表中的数据,捎带着查询副表, 当副表中的数据没有和主表中的数据匹配上,副表自动模…

秒懂sql中的左外连接

左外连接: 1.语法: SELECT 查询字段 FROM 查询表格(左表) LEFT JOIN 右表 ON 查询条件 2.左外连接查询的就是左表,那干嘛加个右表,岂不是没有作用: 区别在于左外连接是查询完左表后&…

sql的四种连接——左外连接、右外连接、内连接、全连接

一、内连接 满足条件的记录才会出现在结果集中。 二、 左外连接(left outer join,outer可省略) 左表全部出现在结果集中,若右表无对应记录,则相应字段为NULL 举例说明: 客户表: 订单表&#x…

数据库的内连接、外连接(左外连接、右外连接、全外连接)以及交叉连接

SQL数据库的连接:内连接、和外连接(左外连接、右外连接、和全连接) 本次实验在MySQL数据库中进行,数据库初始表如下: 一、内连接:结果仅包含符合连接条件的两表中的行。如下: 二、外连接&#…

oracle左外连接、右外连接、完全外连接以及(+)号用法

准备工作 oracle连接分为: 左外连接:左表不加限制,保留左表的数据,匹配右表,右表没有匹配到的行中的列显示为null。右外连接:右表不加限制,保留右表的数据。匹配左表,左表没有匹配到…

左连接,右链接

用两个表(a_table、b_table),关联字段a_table.a_id和b_table.b_id来演示一下MySQL的内连接、外连接( 左(外)连接、右(外)连接、全(外)连接)。 MySQL版本:Server version: 5.6.31 MySQL Community Server (…

全外连接、左外连接和右外连接区别(含举例)

全外连接是左外连接和右外连接的结合。 左外连接和右外连接的区别如下: 1、数据集合上的区别 (1)左外连接:是A与B的交集,然后连接A的所有数据。 (2)右外连接:是A与B的交集&#xff…