数据仓库分层DWD、DWB、DWS

article/2025/9/14 16:22:19

DW :data warehouse 翻译成数据仓库
DW数据分层,由下到上为 DWD,DWB,DWS
DWD:data warehouse detail 细节数据层,有的也称为 ODS层,是业务层与数据仓库的隔离层
DWB:data warehouse base 基础数据层,存储的是客观数据,一般用作中间层,可以认为是大量指标的数据层。
DWS:data warehouse service 服务数据层,基于DWB上的基础数据,整合汇总成分析某一个主题域的服务数据,一般是宽表。

零、数据加载层:ETL(Extract-Transform-Load)
一、数据运营层:ODS(Operational Data Store)
二、数据仓库层:DW(Data Warehouse)

  1. 数据明细层:DWD(Data Warehouse Detail)
  2. 数据中间层:DWM(Data WareHouse Middle)
  3. 数据服务层:DWS(Data WareHouse Servce)
    三、数据应用层:APP(Application)
    四、维表层:(Dimension)

数据分层

数据分层是数据仓库设计中十分重要的一个环节,优秀的分层设计能够让整个数据体系更易理解和使用。

作为一名数据的规划者,我们肯定希望自己的数据能够有秩序地流转,数据的整个生命周期能够清晰明确被设计者和使用者感知到。直观来讲就是如下的左图这般层次清晰、依赖关系直观。

但是,大多数情况下,我们完成的数据体系却是依赖复杂、层级混乱的。如下的右图,在不知不觉的情况下,我们可能会做出一套表依赖结构混乱,甚至出现循环依赖的数据体系。
在这里插入图片描述
因此,我们需要一套行之有效的数据组织和管理方法来让我们的数据体系更有序,这就是谈到的数据分层。数据分层并不能解决所有的数据问题,但是,数据分层却可以给我们带来如下的好处:
清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解
减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算
统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径
复杂问题简单化:将一个复杂的任务分解成多个步骤来完成,每一层解决特定的问题

0x02 一种通用的数据分层设计
为了满足前面提到数据分层带来的好处,我们将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层(APP)。如下图所示。简单来讲,我们可以理解为:**ODS层存放的是接入的原始数据,DW层是存放我们要重点设计的数据仓库中间层数据,APP是面向业务定制的应用数据。**下面详细介绍这三层的设计。
在这里插入图片描述

一、数据运营层:ODS(Operational Data Store)

“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。

一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。

二、数据仓库层:DW(Data Warehouse)

数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。DW层又细分为 DWD(Data Warehouse Detail)层、DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层。

1. 数据明细层:DWD(Data Warehouse Detail)

该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。

另外,在该层也会做一部分的数据聚合,将相同主题的数据汇集到一张表中,提高数据的可用性,后文会举例说明。

2. 数据中间层:DWM(Data WareHouse Middle)

该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。

直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。

3. 数据服务层:DWS(Data WareHouse Servce)

又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。

在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。

三、数据应用层:APP(Application)

在这里,主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。

四、维表层(Dimension)

最后补充一个维表层,维表层主要包含两部分数据:
高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。
低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。
至此,我们讲完了数据分层设计中每一层的含义,这里做一个总结便于理解,如下图。
在这里插入图片描述

0x03 举个栗子

趁热打铁,举个栗子说明一下,如下图,可以认为是一个电商网站的数据体系设计。我们暂且只关注用户访问日志这一部分数据。

1、在ODS层中,由于各端的开发团队不同或者各种其它问题,用户的访问日志被分成了好几张表上报到了我们的ODS层。
2、为了方便大家的使用,我们在DWD层做了一张用户访问行为天表,在这里,我们将PC网页、H5、小程序和原生APP访问日志汇聚到一张表里面,统一字段名,提升数据质量,这样就有了一张可供大家方便使用的明细表了。
3、在DWM层,我们会从DWD层中选取业务关注的核心维度来做聚合操作,比如只保留人、商品、设备和页面区域维度。类似的,我们这样做了很多个DWM的中间表
4、然后在DWS层,我们将一个人在整个网站中的行为数据放到一张表中,这就是我们的宽表了,有了这张表,就可以快速满足大部分的通用型业务需求了。
5、最后,在APP应用层,根据需求从DWS层的一张或者多张表取出数据拼接成一张应用表即可。

备注:例子只是为了简单地说明每一层的作用,并不是最合理的解决方案,大家辩证地看待即可。

在这里插入图片描述

0x04 技术实践

既然谈到了数据分层,那不同的层次中会用到什么计算引擎和存储系统呢,本节来简单分享一下。

数据层的存储一般如下:

  1. Data Source:数据源一般是业务库和埋点,当然也会有第三方购买数据等多种数据来源方式。业务库的存储一般是Mysql 和
    PostgreSql。
  2. ODS 层:ODS 的数据量一般非常大,所以大多数公司会选择存在HDFS上,即Hive或者Hbase,Hive居多。 DW 层:一般和
  3. ODS 的存储一致,但是为了满足更多的需求,也会有存放在 PG 和 ES 中的情况。 APP
    层:应用层的数据,一般都要求比较快的响应速度,因此一般是放在 Mysql、PG、Redis中。
  4. 计算引擎的话,可以简单参考图中所列就行。目前大数据相关的技术更新迭代比较快,本节所列仅为简单参考
    在这里插入图片描述

0x05 思考

如同《漫谈数据仓库和范式》一文在最后思考数据仓库和范式之间的关系一样,本文也将思考和总结一下数据分层的原则是什么?为什么要这样分层?每层之间的界限又是什么?

我个人从这几个角度来理解数据分层的划分:

从对应用的支持来讲,我们希望越靠上层次,越对应用友好。比如APP层,基本是完全为应用来设计的,很易懂,DWS层的话,相对来讲就会有一点点理解成本,然后DWM和DWD层就比较难理解了,因为它的维度可能会比较多,而且一个需求可能要多张表经过很复杂的计算才能完成。

从能力范围来讲,我们希望80%需求由20%的表来支持。直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWM和DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中捞取。结合第一点来讲的话就是:80%的需求,我们都希望以对应用很友好的方式来支持,而不是直接暴露给应用方原始日志。

从数据聚合程度来讲,我们希望,越上层数据的聚合程度越高,看上面的例子即可,ODS和DWD的数据基本是原始日志的粒度,不做任何聚合操作,DWM做了轻度的聚合操作只保留了通用的维度,DWS做了更高的聚合操作,可能只保留一到两个能表征当前描述主体的维度。从这个角度来看,我们又可以理解为我们是按照数据的聚合程度来划分数据层次的。

0xFF 总结

数据分层的设计,在某种程度上也需要通过数据命名来体现,本文的核心在于讲解数据分层的思想和方法,后面会有单独的文章来分享该如何根据数据分层来设计数据表的命名规范。

另外,公众号不便于文章的后续更新和修改,因此公众号会发文章的第一版,然后小的改动会在github上进行。因此,单独建了一个github的repo,大家感兴趣也可以点“阅读原文”进入github地址。

有小伙伴问居士写博客用什么工具,这里回复一下:目前写博客工具是 Typora(Markdown文字编辑) + Draw.io(绘图) + Github(存储)+ Hexo(腾讯云博客部署)。偶尔会有 Xmind 画思维导图,用 Excel 处理表格数据。


http://chatgpt.dhexx.cn/article/pcn2Z2IT.shtml

相关文章

数据分层详解ODS、DWD、DWM、DWS、ADS

详解数仓中的数据分层:ODS、DWD、DWM、DWS、ADS 何为数仓DW Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。 数据仓库的方案建…

简单搞定数仓搭建:数仓模型(DWD)

明细粒度事实层(DWD) 明细粒度事实层以业务过程驱动建模,基于每个具体的业务过程特点,构建最细粒度的明细层事实表。您可以结合企业的数据使用特点,将明细事实表的某些重要维度属性字段做适当冗余,即宽表化…

数据仓库和数据集市详解:ODS、DW、DWD、DWM、DWS、ADS

数据流向 应用示例 何为数仓DW Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。 数据仓库的方案建设的目的,是为前端查询和分析…

六、Sails中执行存储过程模拟Waterline的Create插入数据

文章目录 创建 baseCreate 存储过程参数设置Prepared StatementsLAST_INSERT_ID和IDENTITY 模拟WaterlinesendNativeQuery规划密钥处理转换字段名称和字段值返回数据处理修改控制器代码datetime bugmysql库中对数据库字段类型定义customToJSON postman自动化测试 清楚Waterline…

oracle cdr是什么,CDRD TALK|全栈架构Sails.js简介

原标题:CDRD TALK|全栈架构Sails.js简介 Sails.js是一个可伸缩的、数据驱动的、面向服务的现代App架构。它致力于构建基于Node.js服务的定制化企业级应用。在Sails.js之前,构建一个实用的产品级Node.js应用的时间成本通常以月为单位计算。但是使用Sails.…

node-sails后台搭建

这个就直接简单搭建最基本的后台了 一、安装 安装sails npm i sails sails -v //检测版本 创建空项目 sails new my-app 安装数据库 cd my-app npm install sails-mysql -save 二、文件配置 Datastores.js 里面的数据库配置url Local.js里面port :1448端口 服务启动的端口 …

三、以user表为例,用Amis+Sails实现增删改查操作

文章目录 CRUD 组件查查询api分页fetcher参数观察统一处理method分页参数提交到后端自定义分页和页面大小(pageSize) 搜索排序头部工具条列折叠按钮刷新和导出excel自定义内容 删单条删除批量删除 增新增数据headerToolbar 结果分析前端数据格式要求 改数…

三、Sails 中使用Jwt进行身份认证

文章目录 Jwt 概述为什么要用JwtJwt原理 Jwt认证安装 Jwt 库登录ApiVerify Signature过期时间Nodejs 单线程易崩问题 验证程序修改配置积极策略消极策略多重验证 Jwt 测试正常登录过期或错误密钥测试 Jwt 概述 由于我们是完全前后端分离的开发模式,我们的后端对前端…

Sails基础之Controller层

通过前面的使用,我们可以看出Sails中MVC的结构更倾向于MVP的概念,Presenter在Sails中被称之为Actions: They often act as a middleman between your models and views. Controller层这个结构上的变化是Sails v1.0中新提出的方案,…

二、 在Sails中使用Typescript

文章目录 Typescript 基础Typescript 安装TypeScript 问题最简单的改造 Sails重定义Waterline(Orm) 重写ModelsTypescript 重写控制器User Model的进一步优化前后端约定 路径别名tsconfig.jsonmodule-alias安装使用 Jest测试 Typescript 基础 Typescrip…

四、Sails项目的Api文档——集成Swagger解决方案

文章目录 Api的迷思SwaggerSwagger概述在Sails中集成Swagger安装Swagger 生成设置生成的内容SwaggerUI Assets和.tmpBlueprint 蓝图Blueprint是什么Blueprint 配置local.js 进一步控制Swagger输出路由过滤路由的Swagger配置进一步优化Authorization Api的迷思 我们都知道写代码…

sails mysql_Sails+MVC+Mysql+Node+学习笔记一

项目构建 安装Node就不多说了, 1.sails安装与项目新建运行 npm install sails -g//全局安装 sails new project-name//新建项目 cd project-name //进入刚才新建项目的目录 sails lift //运行项目,运行原理也是直接在项目目录路径下使用node app.js npm …

Sails.js自动化Api实践与测试

开发中为了快速交互数据库,于是需要一个能便捷搭建api的平台。于是学习了一下sails.js框架。本次实践是一次摸索,使用了winston日志记录,supertest单元测试,mongo数据库,hashids哈希值解密。 模块: winstonsupertestmo…

五、解读Sails之Waterline源代码

文章目录 sql调试代码跟踪package.json启动调试Auto-Migrating备份原始数据删除所有表再重建回写备份数据 加密库 encrypted-attraes-256-gcm算法encrypted-att 的使用密钥 sql转义 sqlstring日期处理三种方式比较mariaDB(或my-sql)中的日期时间string 对…

一、Sails基础操作

本篇目录 Sails 安装App结构修改端口跨域问题第一个Api控制器用Postman 做Api调试MySql命令行操作MySql8.0版本加密问题 Sails 操作Mysql创建第一个model实现一个model的增删改查 Sails 安装 Sailsjs提供安装脚手架,使用之前可以先安装Sailjs npm install sails -…

sails

sails介绍 node.js的MVC框架,完全继承Express&socket.io的一些API 使用 全局安装 npm install -g sails创建项目 sails new 项目名称选2 选2 启动项目 sails liftsails框架目录介绍 api MVC结构项目代码目录controller层controller层尽量只做数据封装&…

Sails基础之Models层的config/datastores配置

配置与使用 Sails提供并支持多种Models层的存储(https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters), 使用时需要在应用程序项目下安装对应的adapter并且在config/datastores或config/env/productio…

Sails的简单学习

这里贴出Sails的官方 一.Sails的简单介绍 官网上说: The web framework of your dreams.你梦想中的web框架。 Sails让创建自定义、企业级的Node.js应用的工作变得简单。它模拟了大家熟悉的诸如Ruby on Rails这种框架的MVC设置模式,但是也拥有满足现代…

什么是Sails

Sails的关键字 Realtime MVC Framework for Node.js Node.js Sails采用纯粹的Node.js进行构建,你只需要掌握一门javascript编程语言就可以构建Sails应用程序(Web程序); MVC Framework Sails提供了基于MVC结构组织Web程序的基础…

sublime插件anaconda的设置

在 python 编辑环境下,使用 anaconda 完成一些代码补全和提示 具体设置如下 {//由于Anaconda插件本身无法知道Python安装的路径,所以需要设置Python主程序的实际位置"python_interpreter": "../python.exe",//忽略各种空格不对, 超…