DL4J实战之五:矩阵操作基本功

article/2025/4/30 3:22:22

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

本篇概览

  • 作为《DL4J实战》系列的第五篇,在前面对深度学习有一定的了解后,本篇会暂停深度学习相关的操作,转为基本功练习:矩阵操作,即INDArray接口的基本用法

  • INDArray的类图如下,由于BaseNDArray是个抽象类,因此在实际使用中,咱们用的都是NDArray的实例:
    在这里插入图片描述

  • 之所以用一篇文章来学习矩阵操作,是因为后面的实战过程中处处都有它,处处离不开它,若不熟练就会寸步难行;

  • 本篇涉及的API较多,因此先做好归类,后面的代码按照分类来写会清晰一些,一共分为五类:矩阵属性、创建操作、读操作、写操作、矩阵计算,接下来用思维导图列出每一类的常用API

  • 矩阵属性:
    在这里插入图片描述

  • 创建操作:
    在这里插入图片描述

  • 读操作:
    在这里插入图片描述

  • 写操作:
    在这里插入图片描述

  • 矩阵计算:
    在这里插入图片描述

源码下载

  • 本篇实战中的完整源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):
名称链接备注
项目主页https://github.com/zq2599/blog_demos该项目在GitHub上的主页
git仓库地址(https)https://github.com/zq2599/blog_demos.git该项目源码的仓库地址,https协议
git仓库地址(ssh)git@github.com:zq2599/blog_demos.git该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,《DL4J实战》系列的源码在dl4j-tutorials文件夹下,如下图红框所示:
    在这里插入图片描述
  • dl4j-tutorials文件夹下有多个子工程,本次实战代码在ndarray-experience目录下,如下图红框:
    在这里插入图片描述

创建工程

  • 在父工程dl4j-tutorials下新建名为ndarray-experience的子工程,其pom.xml如下:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><parent><artifactId>dlfj-tutorials</artifactId><groupId>com.bolingcavalry</groupId><version>1.0-SNAPSHOT</version></parent><modelVersion>4.0.0</modelVersion><artifactId>ndarray-experience</artifactId><dependencies><dependency><groupId>org.nd4j</groupId><!--注意要用nd4j-native-platform,否则容器启动时报错:no jnind4jcpu in java.library.path--><artifactId>${nd4j.backend}</artifactId></dependency><dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId></dependency></dependencies></project>
  • 接下来的代码都写在ndarray-experience工程中

最基本的方法

  • 先列出两个最基本的方法,后面学习时会频繁用到它们:
  • rand:秩,维数,例如2行3列的二维矩阵,rand方法返回值等于2
  • shape:矩阵每个维度的大小,如2行3列的二维矩阵,shape方法返回值等于[2, 3]
  • 准备一个静态方法,可以将INDArray实例的详情打印出来,用的就是rand和shape方法:
    private static void disp(String type, INDArray indArray) {StringBuilder stringBuilder = new StringBuilder("*****************************************************\n");stringBuilder.append(type).append("\n维度 : ").append(indArray.rank()).append("\n形状 : ").append(Arrays.toString(indArray.shape())).append("\n完整矩阵 : \n").append(indArray);System.out.println(stringBuilder);}

创建矩阵

  1. 全零矩阵:zeros
// 创建2行3列的全零矩阵
INDArray indArray0 = Nd4j.zeros(2, 3);
disp("全零矩阵", indArray0);
  • 执行结果
全零矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[         0,         0,         0], [         0,         0,         0]]
  1. 全1矩阵:ones
// 创建2行3列的全一矩阵
INDArray indArray1 = Nd4j.ones(2, 3);
disp("全一矩阵", indArray1);
  • 执行结果
全一矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    1.0000,    1.0000], [    1.0000,    1.0000,    1.0000]]
  1. 全是指定值的矩阵:valueArrayOf
// 创建2行3列的全是指定值的矩阵
INDArray indArray2 = Nd4j.valueArrayOf(new int[] {2, 3}, 888);
disp("全是指定值(888)的矩阵", indArray2);
  • 执行结果
全是指定值(888)的矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[  888.0000,  888.0000,  888.0000], [  888.0000,  888.0000,  888.0000]]
  1. rand:随机矩阵(0到1之间的随机数)
// 创建2行3列的随机矩阵
INDArray indArray2 = Nd4j.rand(2, 3);
disp("随机矩阵", indArray2);
  • 执行结果
随机矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    0.7236,    0.5159,    0.1908], [    0.9458,    0.4413,    0.4173]]
  1. 随机高斯分布的矩阵(平均值为0,标准差为1):randn
// 创建2行3列的随机高斯分布矩阵
INDArray indArray3 = Nd4j.randn(2, 3);
disp("随机高斯分布矩阵", indArray3);
  • 执行结果
随机高斯分布矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[   -0.4287,   -0.5790,    0.5004], [   -0.5122,    1.0551,   -0.1998]]
  1. 等差数列:linspace
// 创建等差数列,
// 从1到6、长度为10的等差数列
INDArray indArray4 = Nd4j.linspace(1,6, 10);
disp("等差数列", indArray4);
  • 执行结果
等差数列
维度 : 1
形状 : [10]
完整矩阵 : 
[    1.0000,    1.5556,    2.1111,    2.6667,    3.2222,    3.7778,    4.3333,    4.8889,    5.4444,    6.0000]
  1. 根据数组创建矩阵:create(float[] data, int[] shape)
// 根据数组创建2行3列的矩阵
INDArray indArray6 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
disp("根据数组创建矩阵", indArray6);
  • 执行结果
根据数组创建矩阵
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
  1. 三维矩阵
// 三维矩阵
INDArray indArray7 = Nd4j.valueArrayOf(new int[] {2, 2, 3}, 888);
disp("三维矩阵", indArray7);
```shell
三维矩阵
维度 : 3
形状 : [2, 2, 3]
完整矩阵 : 
[[[  888.0000,  888.0000,  888.0000], [  888.0000,  888.0000,  888.0000]], [[  888.0000,  888.0000,  888.0000], [  888.0000,  888.0000,  888.0000]]]
  1. 创建正方形二维矩阵,并且对角线上的元素值都是1.0:
// 创建3行3列的二维矩阵,对角线值为1.0
INDArray indArray10 = Nd4j.eye(3);
disp("3*3矩阵,且对角线都是1.0", indArray10);
  • 执行结果
3*3矩阵,且对角线都是1.0
维度 : 2
形状 : [3, 3]
完整矩阵 : 
[[    1.0000,         0,         0], [         0,    1.0000,         0], [         0,         0,    1.0000]]

读操作

  • 接下来试试读取相关的操作,回顾前面用数组创建的2行3列的矩阵,内容如下:
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
  1. 读取指定位置:
System.out.println("读取第一行第一列位置的值 : " + indArray6.getDouble(1,1));
  • 执行结果
读取第一行第一列位置的值 : 5.0
  1. 指定行:
System.out.println("读取第一行 : " + indArray6.getRow(1));
  • 执行结果
读取第一行 : [    4.0000,    5.0000,    6.0000]
  1. 指定列:
System.out.println("读取第二列 : " + indArray6.getColumn(2));
  • 执行结果
读取第二列 : [    3.0000,    6.0000]
  1. 指定多列:
System.out.println("读取第二、三列 : " + indArray6.getColumns(1,2));
  • 执行结果
读取第二、三列 : [[    2.0000,    3.0000], [    5.0000,    6.0000]]

写操作

  • 接下来试试读取相关的操作,回顾前面用数组创建的2行3列的矩阵,内容如下:
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
  1. 修改指定位置,查看了源码后发现,put方法内容实际上是在调用putScalar方法:
indArray6.put(1,1, 123);
indArray6.putScalar(0,0, 456);
disp("a. 修改后", indArray6);
  • 执行结果
a. 修改后
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[  456.0000,    2.0000,    3.0000], [    4.0000,  123.0000,    6.0000]]
  1. 修改整行:
// 准备一维数组
INDArray row1 = Nd4j.create(new float[] {9,8,7});// 用一维数组替换矩阵的整行
indArray6.putRow(1, row1);
disp("b. 修改后", indArray6);
  • 执行结果
b. 修改后
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[  456.0000,    2.0000,    3.0000], [    9.0000,    8.0000,    7.0000]]

矩阵计算

  • 矩阵计算,咱们从最基本的四则运算开始
  1. 加减乘除,入参是一个标量,会与矩阵中的所有元素做计算
// 准备好原始数据,2行3列矩阵
indArray6 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});// 加法
disp("加法", indArray6.add(1));// 减法
disp("减法", indArray6.sub(1));// 乘法
disp("乘法", indArray6.mul(2));// 除法
disp("除法", indArray6.div(2));
  • 执行结果
加法
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    2.0000,    3.0000,    4.0000], [    5.0000,    6.0000,    7.0000]]
*****************************************************
减法
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[         0,    1.0000,    2.0000], [    3.0000,    4.0000,    5.0000]]
*****************************************************
乘法
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    2.0000,    4.0000,    6.0000], [    8.0000,   10.0000,   12.0000]]
*****************************************************
除法
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    0.5000,    1.0000,    1.5000], [    2.0000,    2.5000,    3.0000]]
  1. 前面的add方法,执行完毕后会生成一个新的NDArray实例,不影响原对象,但如果调用的是addi,就会修改原对象的内容:
INDArray indArray8 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
disp("替换前", indArray8);
indArray8.addi(1);
disp("替换后", indArray8);
  • 执行结果
替换前
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
*****************************************************
替换后
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    2.0000,    3.0000,    4.0000], [    5.0000,    6.0000,    7.0000]]
  1. 展开:Nd4j.toFlattened,2行3列的二维矩阵展开后成了一维的
disp("展开", Nd4j.toFlattened(indArray6));
  • 执行结果
展开
维度 : 1
形状 : [6]
完整矩阵 : 
[    1.0000,    2.0000,    3.0000,    4.0000,    5.0000,    6.0000]
  1. 转换:reshape,相当于使用原有数据,但是换一个shape入参
disp("转换", indArray6.reshape(3,2));
  • 执行结果
转换
维度 : 2
形状 : [3, 2]
完整矩阵 : 
[[    1.0000,    2.0000], [    3.0000,    4.0000], [    5.0000,    6.0000]]
  1. 提取正方形矩阵的对角线:diag,得到的结果是一维的
// 创建一个人3行3列的正方形矩阵
INDArray indArray9 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6, 7, 8, 9}, new int[]  {3,3});
disp("3*3矩阵", indArray9);
// 提取正方形矩阵的对角线
disp("3*3矩阵的对角线", Nd4j.diag(indArray9));
  • 执行结果如下图,diag方法得到了源对象的对角线
    在这里插入图片描述
  1. 基于源矩阵形状创建新矩阵,且值都相通(入参值),然后用此新矩阵减去源矩阵:rsub
// 初始化一个2行3列的矩阵
INDArray indArray11 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
// 参考indArray12的结构创建一个2行3列的矩阵,该矩阵的所有元素的值都等于10(入参),
// 然后,用该矩阵减去indArray11,结果作为rsub方法的返回值返回
INDArray indArray12 = indArray11.rsub(10);
disp("rsub方法", indArray12);
  • 执行结果如下,可见所有值都是10减去源矩阵对应位置的值:
rsub方法
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    9.0000,    8.0000,    7.0000], [    6.0000,    5.0000,    4.0000]]
  1. 两个矩阵相加:add,两个形状相通的矩阵,同样位置的值相加:
INDArray indArray13 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
INDArray indArray14 = Nd4j.create(new float[] {1, 1, 1, 1, 1, 1}, new int[]  {2,3});disp("矩阵相加", indArray13.add(indArray14));
  • 执行结果
矩阵相加
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    2.0000,    3.0000,    4.0000], [    5.0000,    6.0000,    7.0000]]
  1. 叉乘:mmul,2行3列乘以3行2列,
INDArray indArray13 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
INDArray indArray15 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {3,2});
disp("2行3列", indArray13);
disp("3行2列", indArray15);
disp("2行3列矩阵与3行2列矩阵的叉乘", indArray13.mmul(indArray15));
  • 执行结果,可见,2行3列矩阵的每一行的元素,都和3行2列矩阵每一列的元素做两两相乘再相加,一共四个值,所以结果就是2行2列的矩阵:
    在这里插入图片描述
  1. 矩阵所有元素值累加:sum
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
// 总和
double sum = indArray16.sum().getDouble();
System.out.println("矩阵元素累加和 : " + sum);
  • 执行结果
矩阵元素累加和 : 21.0
  1. 转置操作(不改变源对象):transpose
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});disp("转置前", indArray16);
disp("转置操作", indArray16.transpose());
disp("transpose操作后的原值(不变)", indArray16);
  • 执行结果,可见2行3列转置后变成了3行2列,但是生成了新对象,而源对象未改变
转置前
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
*****************************************************
转置操作
维度 : 2
形状 : [3, 2]
完整矩阵 : 
[[    1.0000,    4.0000], [    2.0000,    5.0000], [    3.0000,    6.0000]]
*****************************************************
transpose操作后的原值(不变)
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
  1. 转置操作(源对象被改变):transposei
INDArray indArray16 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
disp("转置前", indArray16);
disp("转置操作", indArray16.transposei());
disp("transposei操作后的原值(已变)", indArray16);
  • 执行结果
转置前
维度 : 2
形状 : [2, 3]
完整矩阵 : 
[[    1.0000,    2.0000,    3.0000], [    4.0000,    5.0000,    6.0000]]
*****************************************************
转置操作
维度 : 2
形状 : [3, 2]
完整矩阵 : 
[[    1.0000,    4.0000], [    2.0000,    5.0000], [    3.0000,    6.0000]]
*****************************************************
transposei操作后的原值(已变)
维度 : 2
形状 : [3, 2]
完整矩阵 : 
[[    1.0000,    4.0000], [    2.0000,    5.0000], [    3.0000,    6.0000]]
  1. 横向拼接:hstack,要求两个矩阵行数相等
// 2行3列
INDArray indArray17 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
// 2行1列
INDArray indArray18 = Nd4j.create(new float[] {1, 2}, new int[]  {2,1});
disp("源矩阵", indArray17);
disp("拼接上的矩阵", indArray18);
// 2行3列的矩阵,横向拼接一列后,变成了2行4列
disp("横向拼接(每一行都增加一列)", Nd4j.hstack(indArray17, indArray18));
  • 执行结果如下图,可见是把indArray18 横着拼到indArray17 的右侧
    在这里插入图片描述
  1. 纵向拼接:vstack,要求两个矩阵列数相等
// 2行3列
INDArray indArray19 = Nd4j.create(new float[] {1, 2, 3, 4, 5, 6}, new int[]  {2,3});
// 1行3列
INDArray indArray20 = Nd4j.create(new float[] {1, 2, 3}, new int[]  {1,3});
disp("源矩阵", indArray17);
disp("拼接上的矩阵", indArray18);
// 2行3列的矩阵,纵向拼接一行,变成了3行3列
disp("纵向拼接(增加一行)", Nd4j.vstack(indArray19, indArray20));
  • 执行结果如下图,可见是把indArray20放在了indArray19的底部
    在这里插入图片描述
  • 以上就是矩阵操作的常用API了,希望能给您一些参考,在深度学习的开发中更熟练的操作数据

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

http://chatgpt.dhexx.cn/article/o75eQ5us.shtml

相关文章

DL4J实战之六:图形化展示训练过程

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本篇是《DL4J实战》系列的第六篇&#xff0c;咱们继续夯实基本功&#xff0c;这次学习的是如何更加形象完整的展示训练过程&#xff1a;图形化页面&…

使用tensorflow搭建深层神经网络

6在吴恩达老师的《深度学习》第二课第三周的课程中&#xff0c;提及到了多种深度学习框架&#xff0c;包括caffe/caffe2&#xff0c;CNTK&#xff0c;DL4J&#xff0c;Keras&#xff0c;Lasagne&#xff0c;mxnet&#xff0c;paddlepadle&#xff0c;tensorflow&#xff0c;The…

[Deeplearning4j应用教程02]_DL4J环境搭建教程-Windows版

Windows下DL4J环境搭建教程 一、DL4J简介二、Windows下DL4J环境搭建三、安装JDK1.1、JDK简介1.2、JDK下载安装1.3、安装JDK1.3.1、环境变量配置 四、安装Intellij idea五、Maven Apache安装六、在IDEA中配置Maven七、安装Git八、获取DL4J示例代码九、在IDEA中导入项目并运行 一…

DL4J源码分析

目录 源码目录&#xff08;部分&#xff09; NDArray 工作间 DL4J的层工作间管理器 沿维张量&#xff08;TAD&#xff09; 反向减法 源码目录&#xff08;部分&#xff09; DeepLearning4J: 包含用于既在单个机器上&#xff0c;又在分布式上学习神经网络的所有代码。 N…

DL4J实战之四:经典卷积实例(GPU版本)

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 作为《DL4J实战》的第四篇&#xff0c;今天咱们不写代码&#xff0c;而是为今后的实战做些准备&#xff1a;在DL4J框架下用GPU加速深度学习的训练过…

DL4J实战之三:经典卷积实例(LeNet-5)

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 作为《DL4J》实战的第三篇&#xff0c;目标是在DL4J框架下创建经典的LeNet-5卷积神经网络模型&#xff0c;对MNIST数据集进行训练和测试&#xff0…

DL4J实战之二:鸢尾花分类

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 本篇概览 本文是《DL4J》实战的第二篇&#xff0c;前面做好了准备工作&#xff0c;接下来进入正式实战&#xff0c;本篇内容是经典的入门例子&#xff1a;鸢…

DL4J实战之一:准备

欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码)&#xff1a;https://github.com/zq2599/blog_demos 关于DL4J DL4J是Deeplearning4j的简称&#xff0c;是基于Java虚拟机的深度学习框架&#xff0c;是用java和scala开发的&#xff0c;已开源&#xff0c;官网&…

【DL4J】基本操作_学习笔记(二)

DL4J基本操作 文章目录 DL4J基本操作1. 创建矩阵2. 矩阵元素读取3. 矩阵行元素读取4. 矩阵运算 导入依赖 <nd4j.version>1.0.0-beta2</nd4j.version><dependency><groupId>org.nd4j</groupId><artifactId>nd4j-native-platform</artifa…

【DL4J速成】Deeplearning4j图像分类从模型自定义到测试

文章首发于微信公众号《有三AI》 【DL4J速成】Deeplearning4j图像分类从模型自定义到测试 欢迎来到专栏《2小时玩转开源框架系列》&#xff0c;这是我们第九篇&#xff0c;前面已经说过了caffe&#xff0c;tensorflow&#xff0c;pytorch&#xff0c;mxnet&#xff0c;keras&…

深度学习框架DeepLearning4J(DL4J)的安装及配置

一、DeepLearning4J的简介和系统要求 1、DeepLearning4J简介 Deeplearning4J&#xff08;以下简称DL4J&#xff09;不是第一个开源的深度学习项目&#xff0c;但与此前的其他项目相比&#xff0c;DL4J在编程语言和宗旨两方面都独具特色。DL4J是基于JVM、聚焦行业应用且提供商…

适合中学生看的英文电影

怎样利用好丰富的资源来学习英语口语呢&#xff1f;其实其实看什么样的剧、如何看剧都是很讲究的。一起来解锁吧。 一、选剧要学会拆解自己学习目标&#xff0c;选定合适的类型&#xff0c;各取所需。 并不是所有类型的国外影视剧都适合作为学习的素材&#xff0c;主要依据自身…

springboot+mybatis实现简单的增、删、查、改

这篇文章主要针对java初学者&#xff0c;详细介绍怎么创建一个基本的springboot项目来对数据库进行crud操作。 目录 第一步&#xff1a;准备数据库 第二步&#xff1a;创建springboot项目 方法1&#xff1a;通过spring官网的spring initilizer创建springboot项目 方法2&am…

tk-mybatis使用介绍,springboot整合tk-mybatis、PageHelper实现分页查询

Mybatis-Plus极大简化了我们的开发&#xff0c;作为mybatis的增强版&#xff0c;Mybatis-Plus确实帮我们减少了很多SQL语句的编写&#xff0c;通过其提高的API&#xff0c;可以方便快捷第完成增删查改操作。但是&#xff0c;其实除了Mybatis-Plus以外&#xff0c;还有一个技术t…

SXSW 2022线下展回归,今年有哪些有趣的AR/VR内容?

如今海外的线下活动开始逐渐恢复&#xff0c;今年的SXSW活动也回归线下。与往年相比&#xff0c;这场艺术、音乐、电影的年度盛会在今年进一步融合新兴科技&#xff0c;比如将AR/VR与线下活动结合&#xff0c;带来了更多样化的娱乐应用场景。 那么今年活动上都有哪些看点&#…

UE4 Ultra Dynamic Sky 参数翻译及功能概述

Ultra Dynamic Sky的虚幻商城链接: Ultra Dynamic Sky Ultra_Dynamic_Sky翻译及功能概述 basic controls 基础控制 Refresh Settings 刷新设置 检查此布尔一次&#xff0c;以刷新所有设置&#xff1b; Time Of Day 一天中的时间 一天中天空模仿的时间&#xff0c;从0000到…

更新《鸿门宴传奇》黎明/冯绍峰/张涵予/刘亦菲1024x436 高清下载!1.25G 附加720P种子...

高清下载!1.25G 附加720P种子" title="更新《鸿门宴传奇》黎明/冯绍峰/张涵予/刘亦菲1024x436 高清下载!1.25G 附加720P种子"> 高清下载!1.25G 附加720P种子" title="更新《鸿门宴传奇》黎明/冯绍峰/张涵予/刘亦菲1024x436 高清下载!1.25G 附加…

2019年如何成为一名合格的数据分析师

我是CPDA数据分析师 我是CDA数据分析员 我从事数据分析相关工作 我是个数据分析的小白 我想转行做数据分析 今天我围绕如何成为合格的数据分析师跟大家分享三个小话题: 找到在数据分析领域的定位 数据分析思维的训练 数据分析领域发展方向 一、找准数据分析师的定位 …

感谢折磨你的人[三]

第38节 肯定自己才能看见成功 美国联合保险公司董事长克里蒙史东说&#xff1a;“真正的成功秘诀是‘肯定人生’四个字&#xff0c;如果你能以坚定而乐观的态度&#xff0c;去面对一切困难险阻&#xff0c;那么&#xff0c;你一定能从其中得到好处。” 不要抱怨周遭人、事、物对…

舒淇放下黎明战胜抑郁 自称没责任感且不会结婚q1h

舒淇入行至今&#xff0c;最令人印象深入的恋情&#xff0c;要数与黎明的7年情&#xff0c;有传二人当年因黎明父亲及影迷反对而分手&#xff0c;有一段时光&#xff0c;舒淇更患上抑郁症&#xff01;舒淇日前接收拜访时&#xff0c;被问到若心境愁闷会如何面对&#xff0c;她说…