CNN与RNN的区别

article/2025/9/26 3:00:43

从应用方面上来看,我了解到的CNN用到做图像识别比较多,而RNN在做到语言处理多一点,如果拿来比喻的话,CNN如同眼睛一样,正是目前机器用来识别对象的图像处理器。相应地,RNN则是用于解析语言模式的数学引擎,就像耳朵和嘴巴。

对于CNN神经网络,有一个基础的假设——人类的视觉总是会关注视线内特征最明显的点
RNN的假设——事物的发展是按照时间序列展开的,即前一刻发生的事物会对未来的事情的发展产生影响。

CNN

人眼对明显的特征最敏感,人眼解析食物的时候,相当于用滤镜扫过图像。CNN正是利用了这样的一种特性,来扫描并记录图片信息。
首先生成一个滤镜,并对图像整体进行扫描过滤,通过这个滤镜filter解析,得到很多个扫描后的图片分支结果。
在这里插入图片描述
上图中的convolutions 就是在进行图像叠加滤镜扫描,得到一系列结果的工作。

接下来,在得到一系列卷积之后的结果后,我们进行特征的提取,也就是上图中的subsampling。
在这里插入图片描述
这里有个max pool的概念,也就是提取每个小特征当中,值最大的那个。(值越大说明特征越明显,越符合上文说的人眼特性)

通过不停的特征抽取,得到最后的结果,如果这个结果与我们的预期不符,则计算误差值,反馈给每一层的卷积网络,进行微调整,再重复上面的步骤。

CNN过程中,对于边界值的处理。

第一种是在边界之外填充0,以保证滤镜可以像多次扫过中间值一样的扫过边界值。但是这样做容易产生噪声(后添加进去的值)。

第二种是边界停止,即滤镜边缘触碰到图片边界就认为这一侧过滤结束。

RNN

RNN的假设——事物的发展是按照时间序列展开的,即前一刻发生的事物会对未来的事情的发展产生影响。

所以,在处理过程中,每一刻的输出都是带着之前输出值加权之后的结果。
在这里插入图片描述
公式表示t时刻的输出:

在这里插入图片描述

st为当前时刻的输出,xt为当前时刻的输入,U为当前时刻输入值的加权计算,st-1为上一时刻的输出,W为上一时刻输出的权重。

通过这样的计算方式,我们可以认为,当前的结果包含之前的结果,或者说受到之前结果的影响。

但是,RNN对于短期记忆的模型效果很好,却无法进行长期记忆的输出,因为权重累加过于庞大,可能导致结果失真、运算效率低下。

所以LSTM应运而生。
在这里插入图片描述
整个单元内主要包含异或门和与门。

1 异或 1 = 0 认为是相同的信息,舍弃

1 与 0 = 1 将不同的信息叠加

通过这两部运算就能减少我们的数据量,将重复信息遗忘,将未知信息记录下来,将结果更新之后,再输出。

————————————
版权声明:本文为CSDN博主「高斯拟合的周萌萌」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_35227692/article/details/79223536


http://chatgpt.dhexx.cn/article/nFQaXsAt.shtml

相关文章

卷积神经网络(CNN)结构详解

一、CNN的基本结构: 1.图像就是输入层 2.接着是CNN特有的卷积层(convolution),卷积层的自带激活函数使用的是ReLU 3.接着是CNN特有的池化层(pooling), 4.卷积层池化层的组合可以在隐藏层中出…

CNN的实现(附代码)

前言 前文已经单独实现了卷积层和池化层,现在来组合这些层,搭建进行手写数字识别的CNN。 这个简单的CNN网络构成如下。 网络的构成是“Convolution - ReLU - Pooling -Affine - ReLU - Affine - Softmax”,我们将它实现为名为SimpleConvNet…

CNN卷积网络简介

CNN卷积网络 CNN卷积网络的结构 输入层: 输入层是3232 RGB图像。 注:有必要计算每一层输出的图片大小。 卷积层: 卷积层的核心在于卷积核与激活函数。   卷积层最主要的作用是寻找与卷积核匹配的特征,因为与卷积核符合(卷积核…

CNN的通俗理解

Agenda 1 卷积神经网络Convolutional Neural Networks,CNN1.1 前言1.2 图像转化成矩阵1.3 卷积核1.4 特征图feature map1.5 激活函数1.6 池化1.7 训练 1 卷积神经网络Convolutional Neural Networks,CNN 1.1 前言 卷积神经网络是针对图像的深度学习框架。 1.2 图像转化成矩阵…

CNN网络详解

分割线----------------------------------   这里更新过一次,在朋友的提醒下,我发现这份代码不是很容易懂。我使用了Pytorch给的官方demo重新实现了LeNet,并做出了详细解释,如果理解下面代码有问题,可以先看我的这篇…

卷积神经网络(CNN)基本概念

一、卷积神经网络基本概念 卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元相连接。在CNN的一个卷积层中,通常包含若干个特征平面,每个特征平面都由一些矩形排列的神经元…

CNN简单介绍及基础知识

文章目录 一)卷积神经网络历史沿革 二)CNN简单介绍 三)CNN相关基础知识 前言 在过去的几年里,卷积神经网络(CNN)引起了人们的广泛关注,尤其是因为它彻底改变了计算机视觉领域,它是近年来深度学习能在计算机…

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD 前言 之前我所在的公司七月在线开设的深度学习等一系列课程经常会讲目标检测,包括R-CNN、Fast R-CNN、Faster R-CNN,但一直没有比较好的机会深入(但当你对目标检测…

理解 CNN

理解 CNN 注意:下面提到的图像指位图 目录 理解 CNNCNN人类的视觉原理几个关键层卷积层(fliter、kernel)池化层 (pooling) 激活层(activate)全连接层(Linear) pytorch实现TextCNN卷积传播图解不同视角看CNN 参考 CNN 卷积神经网络-CNN 最擅长的就是图片的处理。它…

【深度学习】CNN算法

一.定义: 卷积神经网络(CNN),是一类包含卷积计算且具有深度结构前馈神经网络,是深度学习(deep learning)的代表算法之一。 卷积神经网络具有表征能力,能够按其阶层结构对输入信息进…

Python CNN卷积神经网络实例讲解,CNN实战,CNN代码实例,超实用

一、CNN简介 1. 神经网络基础 输入层(Input layer),众多神经元(Neuron)接受大量非线形输入讯息。输入的讯息称为输入向量。 输出层(Output layer),讯息在神经元链接中传输、分析、权…

CNN(卷积神经网络)详解

Why CNN 首先回答这样一个问题,为什么我们要学CNN,或者说CNN为什么在很多领域收获成功?还是先拿MNIST来当例子说。MNIST数据结构不清楚的话自行百度。。 我自己实验用两个hidden layer的DNN(全连接深度神经网络)在MNIST上也能取得不错的成绩…

CNN(Convolutional Neural Network)

CNN的基本结构 图中是一个图形识别的CNN模型。可以看出最左边的船的图像就是我们的输入层,计算机理解为输入若干个矩阵,这点和DNN基本相同。 接着是卷积层(Convolution Layer),这个是CNN特有的。卷积层的激活函数使用的是ReLU。我…

CNN(卷积神经网络)是什么?(转)

 作者:机器之心 链接:https://www.zhihu.com/question/52668301/answer/131573702 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 卷积神经网络,听起来…

CNN

卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。CNN在图像分类数据集上有非常突出的表现。 DNN与CNN 下图为DNN: 下图为CNN: 虽然两张图的结构…

CNN卷积神经网络(图解CNN)

文章目录 什么是卷积神经网络:1)网络结构2)局部感受野与权值共享3)卷积层、下采样层、全连接层卷积神经网络相比一般神经网络在图像理解中的优点:边缘检测卷积运算卷积层卷积后维度公式及运算示例 Padding填充Valid卷积…

CNN-卷积神经网络

一、基本的神经网络结构 神经网络其实就是按照一定规则连接起来的多个神经元,输入向量的维度和输入层(Input Layer)神经元个数相同,分类问题的类别个数决定输入层(Output Lazyer)的神经元个数。第N层的神经…

CNN是个啥?

阅读须知 本文主要意义是为了方便对CNN有个最直观的理解,知道这个玩意到底是干嘛的。文章本体是UP自己自学深度学习这块的时候做的笔记,内容均为网上收录。发在这里的原因是因为,也许有很多像UP一样不理解了就完全学不了的人存在&#xff0c…

(太长太全面了)CNN超详细介绍

原文链接:https://blog.csdn.net/jiaoyangwm/article/details/80011656 文章目录 1、卷积神经网络的概念2、 发展过程3、如何利用CNN实现图像识别的任务4、CNN的特征5、CNN的求解6、卷积神经网络注意事项7、CNN发展综合介绍8、LeNet-5结构分析9、AlexNet10、ZFNet10…

深度学习——卷积神经网络(CNN)简介

卷积神经网络简介 文章目录 卷积神经网络简介前言一.如何理解卷积1.1什么是卷积1.2 为什么要卷积 二.神经网络的结构三.卷积层四.池化层五.全连接层六.数据训练七.常见的卷积神经网络1. LeNet2 AlexNet3. VGG net4. ResNet 前言 卷积神经网络(Convolutional Neural…