机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化

article/2025/11/9 3:50:12

机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化


欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解 - 总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!

目录标题

  • 机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化
  • 1. 锐化
  • 2. 梯度运算
  • 3. 边缘检测的分类
  • 4. Roberts算子
  • 5. sobel算子
  • 6. Prewitt算子
  • 7. 拉普拉斯算子
  • 8. matlab代码实现

1. 锐化

1.锐化(Sharpening) :图像在传输或变换过程中(如未聚焦好)、受到各种干扰而退化,典型的是图像模糊,而图像的判读和识别中,常需突出目标的轮廓或边缘信息。
2.边缘锐化:主要增强图像的轮廓边缘、细节( 灰度跳变部分),以突出图像中景物的边缘或纹理,形成完整的物体边界,使边缘和轮廓模糊的图像清晰,又叫空域高通滤波(俗称为勾边处理)。
从数学角度看,图像模糊相当于图像被平均或者积分,为实现图像的锐化,我们需要运用它的反运算“微分”——加强高频分量,实现轮廓清晰。

2. 梯度运算

设图像 f ( x , y ) f(x,y) f(x,y)为定义在点 ( x , y ) (x,y) (x,y)的梯度矢量为 G [ f ( x , y ) ] G[f(x,y)] G[f(x,y)]
G [ f ( x , y ) ] = [ ∂ f ∂ x ∂ f ∂ y ] = [ ∂ f ∂ x ∂ f ∂ y ] ⊤ = ∇ f ( x , y ) \mathbf{G}[f(x, y)]=\left[\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array}\right]=\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right]^{\top}=\nabla f(x, y) G[f(x,y)]=[xfyf]=[xfyf]=f(x,y)
性质:

  1. 梯度的方向是在 f ( x , y ) f(x,y) f(x,y)的最大变化率方向
  2. 梯度的幅度用 G [ f ( x , y ) ] G[f(x,y)] G[f(x,y)]表示:

G [ f ( x , y ) ] = [ ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 ] 1 / 2 G[f(x, y)]=\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right]^{1 / 2} G[f(x,y)]=[(xf)2+(yf)2]1/2
对于数字图像来说,梯度的求解从求偏导变成了相减
G [ f ( x , y ) ] = { [ f ( i , j ) − f ( i + 1 , j ) ] 2 + [ f ( i , j ) − f ( i , j + 1 ) ] 2 } 1 / 2 G[f(x, y)]=\left\{[f(i, j)-f(i+1, j)]^{2}+[f(i, j)-f(i, j+1)]^{2}\right\}^{1 / 2} G[f(x,y)]={[f(i,j)f(i+1,j)]2+[f(i,j)f(i,j+1)]2}1/2
简化为 G [ f ( x , y ) ] ≈ ∣ f ( i , j ) − f ( i + 1 , j ) ∣ + ∣ f ( i , j ) − f ( i , j + 1 ) ∣ G[f(x, y)] \approx|f(i, j)-f(i+1, j)|+|f(i, j)-f(i, j+1)| G[f(x,y)]f(i,j)f(i+1,j)+f(i,j)f(i,j+1)

3. 边缘检测的分类

(1)一阶导数的边缘算子
通过模板作为核与图像的每个像素点做卷积和运算,然后选取合适的阈值来提取图像的边缘。常见的有Roberts算子、Sobel算子和Prewitt算子。
(2)二阶导数的边缘算子
依据于二阶导数过零点,常见的有Laplacian 算子,此类算子对噪声敏感。
(3)其他边缘算子
前面两类均是通过微分算子来检测图像边缘,还有一种就是Canny算子,其是在满足一定约束条件下推导出来的边缘检测最优化算子。

4. Roberts算子

对于第二节所讲的数字梯度运算,我们将其公式改变为 G [ f ( x , y ) ] ≈ ∣ f ( i , j ) − f ( i + 1 , j + 1 ) ∣ + ∣ f ( i + 1 , j ) − f ( i , j + 1 ) ∣ G[f(x, y)] \approx|f(i, j)-f(i+1, j+1)|+|f(i+1, j)-f(i, j+1)| G[f(x,y)]f(i,j)f(i+1,j+1)+f(i+1,j)f(i,j+1)
这种交叉梯度我们称之为Roberts梯度。
在这里插入图片描述

5. sobel算子

基本思想:以待增强图像的任意象素 ( i , j ) (i,j) (i,j)为中心,截取一个 3 × 3 3×3 3×3的象素窗口,先分别计算窗口中心象素在 x x x y y y方向的梯度:
S x = [ f ( i − 1 , j + 1 ) + 2 f ( i , j + 1 ) + f ( i + 1 , j + 1 ) ] − [ f ( i − 1 , j − 1 ) + 2 f ( i , j − 1 ) + f ( i + 1 , j − 1 ) ] S y = [ f ( i + 1 , j − 1 ) + 2 f ( i + 1 , j ) + f ( i + 1 , j + 1 ) ] − [ f ( i − 1 , j − 1 ) + 2 f ( i − 1 , j ) + f ( i − 1 , j + 1 ) ] \begin{aligned} &S_{x}=[f(i-1, j+1)+2 f(i, j+1)+f(i+1, j+1)]-[f(i-1, j-1)+2 f(i, j-1)+f(i+1, j-1)]\\&S_{y}=[f(i+1, j-1)+2 f(i+1, j)+f(i+1, j+1)]-[f(i-1, j-1)+2 f(i-1, j)+f(i-1, j+1)]\end{aligned} Sx=[f(i1,j+1)+2f(i,j+1)+f(i+1,j+1)][f(i1,j1)+2f(i,j1)+f(i+1,j1)]Sy=[f(i+1,j1)+2f(i+1,j)+f(i+1,j+1)][f(i1,j1)+2f(i1,j)+f(i1,j+1)]
增强后的 ( i , j ) (i,j) (i,j)的灰度: f ′ ( i , j ) = S x 2 + S y 2 f^{\prime}(i, j)=\sqrt{S_{x}^{2}+S_{y}^{2}} f(i,j)=Sx2+Sy2
可以简化为 f ′ ( i , j ) = ∣ S x ∣ + ∣ S y ∣ f^{\prime}(i, j)={|S_{x}|+|S_{y}|} f(i,j)=Sx+Sy
优点:

  • 由于引入了加权平均,所以对图像中的随机噪声具有一定的平滑作用。
  • 由于采用间隔两行或两列的差分,边缘两侧的象素得到增强,锐化图像的边缘显得粗而亮。

S x , S y Sx,Sy Sx,Sy可用卷积模板来实现 可用卷积模板来实现:
S x = [ − 1 0 1 − 2 0 2 − 1 0 1 ] S y = [ − 1 − 2 − 1 0 0 0 1 2 1 ] S_{x}=\left[\begin{array}{ccc}-1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1\end{array}\right] \quad S_{y}=\left[\begin{array}{ccc}-1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1\end{array}\right] Sx= 121000121 Sy= 101202101
可见:其重点放在接近于模板中心的象素点

6. Prewitt算子

基本思想:与Sobel算子相同,方程的形式相同,但其中系数不同:
S x = [ − 1 0 1 − 1 0 1 − 1 0 1 ] S y = [ − 1 − 1 − 1 0 0 0 1 1 1 ] S p = S x 2 + S y 2 \begin{array}{c} S_{x}=\left[\begin{array}{ccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array}\right] \quad S_{y}=\left[\begin{array}{ccc} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}\right] \\\\ S_{p}=\sqrt{S_{x}^{2}+S_{y}^{2}} \end{array} Sx= 111000111 Sy= 101101101 Sp=Sx2+Sy2
可见:与Sobel算子不同 ,其重点没有放在接近于模板中心的象素点。

7. 拉普拉斯算子

基本思想:拉普拉斯(Laplacian) 算子是 n 维欧几里德空间中的一个二阶微分算子。 ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} 2f=x22f+y22f 具有各向同性。

  1. 对于数字图像 f ( x , y ) f(x,y) f(x,y) ,其一阶导数为:
    { ∂ f ( i , j ) ∂ x = Δ x f ( i , j ) = f ( i , j ) − f ( i − 1 , j ) ∂ f ( i , j ) ∂ y = Δ y f ( i , j ) = f ( i , j ) − f ( i , j − 1 ) \left\{\begin{array}{l} \frac{\partial f(i, j)}{\partial x}=\Delta_{x} f(i, j)=f(i, j)-f(i-1, j) \\\\ \frac{\partial f(i, j)}{\partial y}=\Delta_{y} f(i, j)=f(i, j)-f(i, j-1) \end{array}\right. xf(i,j)=Δxf(i,j)=f(i,j)f(i1,j)yf(i,j)=Δyf(i,j)=f(i,j)f(i,j1)
  2. f ( x , y ) f(x,y) f(x,y) ,其二阶导数为:
    { ∂ 2 f ( i , j ) ∂ x 2 = Δ x f ( i + 1 , j ) − Δ x f ( i , j ) = [ f ( i + 1 , j ) − f ( i , j ) ] − [ f ( i , j ) − f ( i − 1 , j ) ] = f ( i + 1 , j ) + f ( i − 1 , j ) − 2 f ( i , j ) ∂ 2 f ( i , j ) ∂ y 2 = f ( i , j + 1 ) + f ( i , j − 1 ) − 2 f ( i , j ) \left\{\begin{aligned} \frac{\partial^{2} f(i, j)}{\partial x^{2}} &=\Delta_{x} f(i+1, j)-\Delta_{x} f(i, j) \\ &=[f(i+1, j)-f(i, j)]-[f(i, j)-f(i-1, j)] \\ &=f(i+1, j)+f(i-1, j)-2 f(i, j) \\\\ \frac{\partial^{2} f(i, j)}{\partial y^{2}} &=f(i, j+1)+f(i, j-1)-2 f(i, j) \end{aligned}\right. x22f(i,j)y22f(i,j)=Δxf(i+1,j)Δxf(i,j)=[f(i+1,j)f(i,j)][f(i,j)f(i1,j)]=f(i+1,j)+f(i1,j)2f(i,j)=f(i,j+1)+f(i,j1)2f(i,j)
  3. 拉普拉斯算子为: ∇ 2 f ( i , j ) = Δ x 2 f ( i , j ) + Δ y 2 ( i , j ) = f ( i + 1 , j ) + f ( i − 1 , j ) + f ( i , j + 1 ) + f ( i , j − 1 ) − 4 f ( i , j ) = − 5 { f ( i , j ) − 1 5 [ f ( i + 1 , j ) + f ( i − 1 , j ) + f ( i , j + 1 ) + f ( i , j − 1 ) + f ( i , j ) ] } \begin{aligned} \nabla^{2} f(i, j) &=\Delta_{x}^{2} f(i, j)+\Delta_{y}^{2}(i, j) \\ &=f(i+1, j)+f(i-1, j)+f(i, j+1)+f(i, j-1)-4 f(i, j) \\ &=-5\left\{f(i, j)-\frac{1}{5}[f(i+1, j)+f(i-1, j)+f(i, j+1)+f(i, j-1)+f(i, j)]\right\} \end{aligned} 2f(i,j)=Δx2f(i,j)+Δy2(i,j)=f(i+1,j)+f(i1,j)+f(i,j+1)+f(i,j1)4f(i,j)=5{f(i,j)51[f(i+1,j)+f(i1,j)+f(i,j+1)+f(i,j1)+f(i,j)]}

其中,Laplacian算子四邻域模板如下所示:
H = [ 0 − 1 0 − 1 4 − 1 0 − 1 0 ] \mathrm{H}=\left[\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{array}\right] H= 010141010
Laplacian算子八邻域模板如下所示
H = [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] \mathrm{H}=\left[\begin{array}{ccc} -1 & -1 & -1 \\ -1 & 8& -1 \\ -1 & -1 & -1 \end{array}\right] H= 111181111
可见:

  • 当邻域内像素灰度相同时,模板的卷积运算结果为0;
  • 当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;
  • 当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。

8. matlab代码实现

clc;clear all;
img = imread('C:\Users\lihuanyu\Desktop\opencv\image\lena256.bmp');
figure;
imshow(img),title("原图像");
[ROW,COL] = size(img);
img = double(img);
new_img = zeros(ROW,COL); %新建画布
%定义robert算子
roberts_x = [1,0;0,-1];
roberts_y = [0,-1;1,0];
for i = 1:ROW - 1for j = 1:COL - 1funBox = img(i:i+1,j:j+1);G_x = roberts_x .* funBox;G_x = abs(sum(G_x(:)));G_y = roberts_y .* funBox;G_y = abs(sum(G_y(:)));roberts_xy  = G_x * 0.5 + G_y * 0.5;new_img(i,j) = roberts_xy;end
end
figure(2);
imshow(new_img/255),title("robert算子的图像");
% 定义laplace算子
laplace = [0,1,0;1,-4,1;0,1,0];
for i = 1:ROW - 2for j = 1:COL - 2funBox = img(i:i+2,j:j+2);G = laplace .* funBox;G = abs(sum(G(:)));new_img(i+1,j+1) = G;end
end
figure(3)
imshow(new_img/255),title("laplace算子的图像");
%定义sobel算子
sobel_x = [-1,0,1;-2,0,2;-1,0,1];
sobel_y = [-1,-2,-1;0,0,0;1,2,1];
for i = 1:ROW - 2for j = 1:COL - 2funBox = img(i:i+2,j:j+2);G_x = sobel_x .* funBox;G_x = abs(sum(G_x(:)));G_y = sobel_y .* funBox;G_y = abs(sum(G_y(:)));sobelxy  = G_x * 0.5 + G_y * 0.5;new_img(i+1,j+1) = sobelxy;end
end
figure(4);
imshow(new_img/255),title("sobel的图像");
%定义Prewitt算子
sobel_x = [-1,0,1;-1,0,1;-1,0,1];
sobel_y = [-1,-1,-1;0,0,0;1,1,1];
for i = 1:ROW - 2for j = 1:COL - 2funBox = img(i:i+2,j:j+2);G_x = sobel_x .* funBox;G_x = abs(sum(G_x(:)));G_y = sobel_y .* funBox;G_y = abs(sum(G_y(:)));sobelxy  = G_x * 0.5 + G_y * 0.5;new_img(i+1,j+1) = sobelxy;end
end
figure(5);
imshow(new_img/255),title("Prewitt的图像");

原图:
在这里插入图片描述

结果:
在这里插入图片描述


http://chatgpt.dhexx.cn/article/mQveAjUo.shtml

相关文章

10.1 Python图像处理之边缘算子-Sobel算子、Roberts算子、拉普拉斯算子、Canny算子、Prewitt算子、高斯拉普拉斯算子

10.1 Python图像处理之边缘算子-Sobel算子、Roberts算子、拉普拉斯算子、Canny算子、Prewitt算子、高斯拉普拉斯算子 文章目录 10.1 Python图像处理之边缘算子-Sobel算子、Roberts算子、拉普拉斯算子、Canny算子、Prewitt算子、高斯拉普拉斯算子1 算法原理1.1 Sobel 算子1.2 Ro…

【计算机视觉】卷积、均值滤波、高斯滤波、Sobel算子、Prewitt算子(Python实现)

##1.环境的搭建 Python 3.6OpenCV Open Source Computer Vision Library.OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、MacOS操作…

几种边缘检测算子的比较Roberts,Sobel,Prewitt,LOG,Canny

from:https://blog.csdn.net/gdut2015go/article/details/46779251 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括:深度上的…

prewitt算子实现

原理&#xff1a; 实现&#xff1a; /*** description: prewitt算子* param src 输入图像* param dst 输出图像*/ void prewitt(cv::Mat& src, cv::Mat& dst) {cv::Mat getPrewitt_horizontal (cv::Mat_<float>(3, 3) << -1, -1, -1, 0, 0, 0, 1, 1, …

数字图像处理——Sobel算子锐化、Prewitt算子锐化

数字图像处理——Sobel算子锐化、Prewitt算子锐化 一、Sobel算子锐化 %函数名称为Image_Sobel,输入参数Image,输出参数IMAGE function [IMAGE] Image_Sobel(Image) %获取矩阵的行、列、波段数 [m,n,bands] size(Image); %定义模板大小&#xff0c;假设模板大小33 A 1; %定义…

Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

前文传送门&#xff1a; 「Python 图像处理 OpenCV &#xff08;1&#xff09;&#xff1a;入门」 「Python 图像处理 OpenCV &#xff08;2&#xff09;&#xff1a;像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV &#xff08;3&#xff09;&…

[Python从零到壹] 五十七.图像增强及运算篇之图像锐化Roberts、Prewitt算子实现边缘检测

欢迎大家来到“Python从零到壹”&#xff0c;在这里我将分享约200篇Python系列文章&#xff0c;带大家一起去学习和玩耍&#xff0c;看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解&#xff0c;真心想把自己近十年的编程经验分享给大家&#xff0c;希望…

Prewitt算子计算图像梯度

Prewitt算子是一阶微分算子的边缘检测&#xff0c;利用像素点上下、左右邻点的灰度差&#xff0c;在边缘处达到极值检测边缘&#xff0c;去掉部分伪边缘&#xff0c;对噪声具有平滑作用。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成&#xff0c;这两个方向模板…

opencv-6 边缘检测(Prewitt算子,Sobel算子,Laplacian算子)

Roberts filter2D形式实现 import cv2 import numpy as np import matplotlib.pyplot as pltimg cv2.imread(lena.jpg) lenna_img cv2.cvtColor(img,cv2.COLOR_BGR2RGB) grayImage cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)kernelx np.array([[-1,0],[0,1]],dtypeint) kernely…

梯度与Roberts、Prewitt、Sobel、Lapacian算子

一、学习心得&#xff1a; 学习图像处理的过程中&#xff0c;刚开始遇到图像梯度和一些算子的概念&#xff0c;这两者到底是什么关系&#xff0c;又有什么不同&#xff0c;一直困扰着我。后来在看到图像分割这一模块后才恍然大悟&#xff0c;其实图像的梯度可以用一阶导数和二…

【计算机视觉】图像分割与特征提取——基于Roberts、Prewitt、Sobel算子的图像分割实验

个人简介&#xff1a; > &#x1f4e6;个人主页&#xff1a;赵四司机 > &#x1f3c6;学习方向&#xff1a;JAVA后端开发 > ⏰往期文章&#xff1a;SpringBoot项目整合微信支付 > &#x1f514;博主推荐网站&#xff1a;牛客网 刷题|面试|找工作神器 > &#…

边缘检测——Prewitt算子

垂直水平方向边缘 垂直水平方向的Prewitt算子是可分离的卷积核。 45、135方向边缘 算子不可分割。 缺点 没有充分利用边缘的梯度方向最后输出的边缘二值图&#xff0c;只是简单地利用阈值进行处理。如果阈值过大&#xff0c;则会损失很多边缘信息&#xff1b;如果阈值过…

数字图像处理(19): 边缘检测算子(Roberts算子、Prewitt算子、Sobel算子 和 Laplacian算子)

目录 1 边缘检测的基本原理 2 边缘检测算子分类 3 梯度 3.1 图像梯度 3.2 梯度算子 4 Roberts 算子 4.1 基本原理 4.2 代码示例 5 Prewitt 算子 5.1 基本原理 5.2 代码示例 6 Sobel 算子 6.1 基本原理 6.2 代码示例 7 Laplacian 算子 7.1 基本原理 7.2 代码示…

python数字图像处理——边缘检测算子(Laplacian算子、Roberts算子、Prewitt算子和Sobel算子)

1.Laplacian算子 拉普拉斯&#xff08;Laplacian&#xff09;算子是n维欧几里德空间中的一个二阶微分算子&#xff0c;常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素&#xff0c;基本流程是&#xff1a;判断图像中心像素灰度值与它周围其他像素的灰度值&…

Prewitt算子边缘检测原理及实现

写在前面 Prewitt算子同样也是一种一阶微分算子&#xff0c;利用像素点上下左右邻点灰度差&#xff0c;在边缘处达到极值检测边缘&#xff0c;对噪声具有平滑的作用。 原理 其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的&#xff0c;这两个方向模板一个检测…

Prewitt和Sobel算子

在3*3模板中&#xff1a; 我如下定义水平、垂直和两对角线方向的梯度&#xff1a; 该定义下的算子称之为Prewitt算子&#xff1a; Sobel算子是在Prewitt算子的基础上改进的&#xff0c;在中心系数上使用一个权值2&#xff0c;相比较Prewitt算子&#xff0c;Sobel模板能够较好…

Prewitt边缘检测算子

Prewitt算子也是一种一阶微分算子&#xff0c;用于边缘检测。与Robert使用22的模板不同&#xff0c;Prewitt算子使用的是33的模板&#xff0c;利用像素点上下、左右邻点的灰度差来检测边缘&#xff0c;故其边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。 其数学表…

图像边缘检测之Prewitt算子

Prewitt 算子 1. 原理 Prewitt算子是一种图像边缘检测的微分算子&#xff0c;其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用 3x3 模板对区域内的像素值进行计算&#xff0c;而Robert算子的模板为 2x2&#xff0c;故Prewitt算子的边缘检测结果…

华为--配置本地环回接口地址

该实验紧接上一节实验 网络拓扑图如下 AR1环回接口配置 AR2环回接口配置 AR3环回接口配置 配置AR1回环接口路由 配置AR2回环接口路由 配置AR3回环接口路由 在AR1上测试回环接口的连通性 在AR2上测试回环接口的连通性 在AR3上测试回环接口的连通性 测试成功 转载于:https://my.o…

【LINUX】ifconfig只有本地环回地址问题的解决方法

问题描述&#xff1a; ifconfig只有lo&#xff0c;没有看到ens33 ifconfig -a看到了ens33&#xff0c;但是没有地址 解决方法&#xff1a; &#xff08;1&#xff09;stop network-manager sudo service network-manager stop &#xff08;2&#xff09;删除旧有的网络配置…