CNN基本结构和经典网络

article/2025/9/16 9:19:16

卷积网络的基本结构

  • 数据输入层/ Input layer

3种常见的图像数据处理方式:一般CNN只用去均值

  • 卷积计算层/ CONV layer

基本概念:

  1. depth:与神经元(filter)个数相等
  2. stribe
  3. zero-padding

卷积宽长深度计算:

W_{2}=(W_{1}-F+2P)/S+1

H_{2}=(H_{1}-F+2P)/S+1

depth=depth(filter)

  • 激励层(ReLU)

 Sigmoid
 Tanh(双曲正切)
 ReLU
 Leaky ReLU
 ELU


 Maxout

  • 池化层 / Pooling layer

 夹在连续的卷积层中间
 压缩数据和参数的量,减小过拟合

池化之后的宽高计算如下:(eg:一个2*2,S=2,池化之后刚好是原来图像的一半

W_{2}=(W_{1}-F)/S+1

H_{2}=(H_{1}-F)/S+1

 典型CNN结构

LeNet

 

AlexNet

分了两组:8层结构(5卷积层+3全连接)跟LeNet相比深度加深,每层神经元数减少

ZF Net

可以理解为对AlexNet进行了微调。

VGGNet

VGG-16有16个卷积层或全连接层,包括五组卷积层和3个全连接层,即:16=2+2+3+3+3+3。

1、输入224x224x3的图片,经64个3x3的卷积核作两次卷积+ReLU,卷积后的尺寸变为224x224x64

2、作max pooling(最大化池化),池化单元尺寸为2x2(效果为图像尺寸减半),池化后的尺寸变为112x112x64

3、经128个3x3的卷积核作两次卷积+ReLU,尺寸变为112x112x128

4、作2x2的max pooling池化,尺寸变为56x56x128

5、经256个3x3的卷积核作三次卷积+ReLU,尺寸变为56x56x256

6、作2x2的max pooling池化,尺寸变为28x28x256

7、经512个3x3的卷积核作三次卷积+ReLU,尺寸变为28x28x512

8、作2x2的max pooling池化,尺寸变为14x14x512

9、经512个3x3的卷积核作三次卷积+ReLU,尺寸变为14x14x512

10、作2x2的max pooling池化,尺寸变为7x7x512

11、与两层1x1x4096,一层1x1x1000进行全连接+ReLU(共三层)

12、通过softmax输出1000个预测结果 

注意内存的计算

GoogLeNet

去掉了全连接层

 

 

 


http://chatgpt.dhexx.cn/article/hQqQochW.shtml

相关文章

CNN概述

CNN 卷积神经网络简介 特点 将大数据量的图片降维成小数据量有效保留图片特征 应用领域 人脸识别、自动驾驶、无人安防 CNN解决的问题 图像的数据量太大,导致成本很高,效率很低图像在数字化的过程中容易丢失特征(其实就对应了两个特点&…

常见CNN网络结构的详解和代码实现

1. AlexNet 论文地址:ImageNet Classification with Deep Convolutional Neural Networks 2012年提出的AlexNet的网络结构为: 结构说明如下: 1.1 ReLu(Rectified Linear Units)激活函数: Relu函数为 r e l u ( x ) m a x { 0 , x } { …

图像分类网络-经典CNN网络简介

在CNN网络结构的演化上,出现过许多优秀的CNN网络,CNN的经典结构始于1998年的LeNet,成于2012年历史性的AlexNet,从此大盛于图像相关领域,主要包括: 发展历史:Lenet --> Alexnet --> ZFnet …

使用PyTorch搭建CNN神经网络

使用pytorch搭建CNN神经网络 卷积运算的基本原理单层卷积运算valid convolutionsame convolution CNN的基本结构数据输入层卷积层池化层全连接层 数据导入的实现构建基础的CNN网络网络的设计损失函数和优化器训练函数和测试函数实现CNN网络的训练和测试 Googlenet的实现网络框架…

CNN(卷积神经网络)概述

过去几年,深度学习(Deep learning)在解决诸如视觉识别(visual recognition)、语音识别(speech recognition)和自然语言处理(natural language processing)等很多问题方面都表现出非常好的性能。在不同类型的深度神经网络当中,卷积…

CNN卷积网络

CNN卷积神经网络 1.与全连接神经网络的区别 1).总有至少一个卷积层 2).卷积层级之间的神经元是局部连接和权值共享(整张图片在使用同一个卷积核内的参数,卷积核里的值叫做权重,不会因为图像内位置的不同而改变卷积核内的权系数)&#xff0…

CNN(卷积神经网络)

一、卷积神经网络 1、CNN的基本知识 1、卷积神经网络(Convolutional Neural Networks,CNN)的作用:1.cnn跟全连接的区别:原来一个输出神经元的计算是跟所有输入层的神经元相连,现在只是局部输入层的神经元相连;同一所…

CNN卷积神经网络

目录 一、BP神经网络回顾 二、CNN卷积神经网络 1、CNN的主要概述 2、CNN的一般结构 三、CNN卷积神经网络的应用 四、常见的CNN卷积神经网络 一、BP神经网络回顾 人工全连接神经网络 (1)每相邻两层之间的每个神经元之间都是有边相连的 &#xff0…

深度学习----CNN几种常见网络结构及区别

一、 CNN结构演化历史的图二、 AlexNet网络 2.1 ReLU 非线性激活函数 多GPU训练(Training on Multiple GPUs)局部响应归一化(Local Response Normalization)重叠池化(Overlapping Pooling) 2.2 降低过拟合( Reducing Overfitting) 数据增强(Data Augmentation)Dropout 三、VG…

神经网络--从0开始搭建全连接网络和CNN网络

前言: Hello大家好,我是Dream。 今天来学习一下如何从0开始搭建全连接网络和CNN网络,并通过实验简单对比一下两种神经网络的不同之处,本文目录较长,可以根据需要自动选取要看的内容~ 本文目录: 一、搭建4层…

经典CNN网络:Resnet18网络结构输入和输出

前言 Q1:每当看到一个新的网络,总会思考,这个网络提出来有什么意义,解决了什么问题? Resnet18中的resnet就时网络结构呗,18应该是权重层的数量(参照VGG16的命名方法,应该时这样理解)。 Q2:为什么会出现Resn…

深度学习——CNN卷积神经网络

基本概念 概述 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习中常用于处理具有网格结构数据的神经网络模型。它在计算机视觉领域广泛应用于图像分类、目标检测、图像生成等任务。 核心思想 CNN 的核心思想是通过利用局部…

通俗易懂:图解10大CNN网络架构

作者 | Raimi Karim 译者 | Major 编辑 | 赵雪 出品 | AI科技大本营(ID: rgznai100) 导语:近年来,许多卷积神经网络( CNN )跃入眼帘,而随着其越来越深的深度,我们难以对某个 CNN 的结…

详解CNN卷积神经网络

详解卷积神经网络(CNN) 详解卷积神经网络CNN概揽Layers used to build ConvNets 卷积层Convolutional layer池化层Pooling Layer全连接层Fully-connected layer 卷积神经网络架构 Layer PatternsLayer Sizing PatternsCase Studies 参考 卷积神经网络(Convolutional…

CNN 卷积神经网络

文章目录 9、CNN 卷积神经网络9.1 Revision9.2 Introduction9.3 Convolution9.3.1 Channel9.3.2 Layer9.3.3 Padding9.3.4 Stride 9.4 Max Pooling9.5 A Simple CNN9.5.1 GPU9.5.2 Code 19.5.3 Exercise9.5.4 Code 2 9.6 GoogLeNet9.6.1 Inception Module9.6.2 1 x 1 convoluti…

简要笔记-CNN网络

以下是CNN网络的简要介绍。 1 CNN的发展简述 CNN可以有效降低传统神经网络(全连接)的复杂性,常见的网络结构有LeNet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet等。 1.1 CNN常见的网络结构 (1)LeNet(1998年 ): 首个…

CNN神经网络

一、基础概念 1.1 卷积(filter) 、CNN使用卷积的思想和意义 改变全连接为局部连接,这是由于图片的特殊性造成的(图像的一部分的统计特性与其他部分是一样的),通过局部连接和参数共享,大范围的减少参数值。可以通过使用多个filter来提取图像的不同特征(…

卷积神经网络(CNN)详细介绍及其原理详解

文章目录 前言一、什么是卷积神经网络二、输入层三、卷积层四、池化层五、全连接层六、输出层七、回顾整个过程总结 前言 本文总结了关于卷积神经网络(CNN)的一些基础的概念,并且对于其中的细节进行了详细的原理讲解,通过此文可以…

CNN卷积神经网络详解

1、cnn卷积神经网络的概念 卷积神经网络(CNN),这是深度学习算法应用最成功的领域之一,卷积神经网络包括一维卷积神经网络,二维卷积神经网络以及三维卷积神经网络。一维卷积神经网络主要用于序列类的数据处理&#xff…

4、计算机中的进制数转换(十进制、二进制、八进制、十六进制)

目录 课前先导 一、计算机中的进制数 十进制(简写:D) 二进制(简写:B) 八进制(简写:Q) 十六进制(简写:H) 二、计算机进制数之间…