Building your Deep Neural Network - Step by Step v5 作业 - Neural Networks and Deep Learning

article/2025/8/20 6:48:21

终于做完了,放在这里。。。复习用

Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.

After this assignment you will be able to:
- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

Notation:
- Superscript [l] denotes a quantity associated with the lth layer.
- Example: a[L] is the Lth layer activation. W[L] and b[L] are the Lth layer parameters.
- Superscript (i) denotes a quantity associated with the ith example.
- Example: x(i) is the ith training example.
- Lowerscript i denotes the ith entry of a vector.
- Example: a[l]i denotes the ith entry of the lth layer’s activations).

Let’s get started!

1 - Packages

Let’s first import all the packages that you will need during this assignment.
- numpy is the main package for scientific computing with Python.
- matplotlib is a library to plot graphs in Python.
- dnn_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don’t change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v3 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'%load_ext autoreload
%autoreload 2np.random.seed(1)
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')

2 - Outline of the Assignment

To build your neural network, you will be implementing several “helper functions”. These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an L -layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
    • Complete the LINEAR part of a layer’s forward propagation step (resulting in Z[l]).
    • We give you the ACTIVATION function (relu/sigmoid).
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
    • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer L ). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
    • Complete the LINEAR part of a layer’s backward propagation step.
    • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
    • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.
    这里写图片描述
    Figure 1

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to L layers.

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network.

Instructions:
- The model’s structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
- Use zero initialization for the biases. Use np.zeros(shape).

# GRADED FUNCTION: initialize_parametersdef initialize_parameters(n_x, n_h, n_y):"""Argument:n_x -- size of the input layern_h -- size of the hidden layern_y -- size of the output layerReturns:parameters -- python dictionary containing your parameters:W1 -- weight matrix of shape (n_h, n_x)b1 -- bias vector of shape (n_h, 1)W2 -- weight matrix of shape (n_y, n_h)b2 -- bias vector of shape (n_y, 1)"""np.random.seed(1)### START CODE HERE ### (≈ 4 lines of code)W1 = np.random.randn(n_h,n_x)*0.01b1 = np.zeros((n_h,1))W2 = np.random.randn(n_y,n_h)*0.01b2 = np.zeros((n_y,1))### END CODE HERE ###assert(W1.shape == (n_h, n_x))assert(b1.shape == (n_h, 1))assert(W2.shape == (n_y, n_h))assert(b2.shape == (n_y, 1))parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters    
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01624345 -0.00611756 -0.00528172][-0.01072969  0.00865408 -0.02301539]]
b1 = [[ 0.][ 0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[ 0.]]

Expected output:

**W1** [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]]
**b1**[[ 0.] [ 0.]]
**W2** [[ 0.01744812 -0.00761207]]
**b2** [[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l] is the number of units in layer l . Thus for example if the size of our input X is (12288,209) (with m=209 examples) then:

**Shape of W** **Shape of b** **Activation** **Shape of Activation**
**Layer 1** (n[1],12288) (n[1],1) Z[1]=W[1]X+b[1] (n[1],209)
**Layer 2** (n[2],n[1]) (n[2],1) Z[2]=W[2]A[1]+b[2] (n[2],209)
**Layer L-1** (n[L1],n[L2]) (n[L1],1) Z[L1]=W[L1]A[L2]+b[L1] (n[L1],209)
**Layer L** (n[L],n[L1]) (n[L],1) Z[L]=W[L]A[L1]+b[L] (n[L],209)

Remember that when we compute WX+b in python, it carries out broadcasting. For example, if:

W=jmpknqlorX=adgbehcfib=stu(2)

Then WX+b will be:

WX+b=(ja+kd+lg)+s(ma+nd+og)+t(pa+qd+rg)+u(jb+ke+lh)+s(mb+ne+oh)+t(pb+qe+rh)+u(jc+kf+li)+s(mc+nf+oi)+t(pc+qf+ri)+u(3)

Exercise: Implement initialization for an L-layer Neural Network.

Instructions:
- The model’s structure is [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID. I.e., it has L1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
- Use zeros initialization for the biases. Use np.zeros(shape).
- We will store n[l] , the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the “Planar Data classification model” from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1’s shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to L layers!
- Here is the implementation for L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

    if L == 1:parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deepdef initialize_parameters_deep(layer_dims):"""Arguments:layer_dims -- python array (list) containing the dimensions of each layer in our networkReturns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])bl -- bias vector of shape (layer_dims[l], 1)"""np.random.seed(3)parameters = {}L = len(layer_dims)            # number of layers in the networkfor l in range(1, L):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1])*0.01parameters['b' + str(l)] = np.zeros((layer_dims[l],1))### END CODE HERE ###assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388][-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218][-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034][-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[ 0.][ 0.][ 0.][ 0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716][-0.01023785 -0.00712993  0.00625245 -0.00160513][-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[ 0.][ 0.][ 0.]]

Expected output:

**W1** [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
**b1** [[ 0.] [ 0.] [ 0.] [ 0.]]
**W2** [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
**b2** [[ 0.] [ 0.] [ 0.]]

4 - Forward propagation module

4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

  • LINEAR
  • LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
  • [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

Z[l]=W[l]A[l1]+b[l](4)

where A[0]=X .

Exercise: Build the linear part of forward propagation.

Reminder:
The mathematical representation of this unit is Z[l]=W[l]A[l1]+b[l] . You may also find np.dot() useful. If your dimensions don’t match, printing W.shape may help.

# GRADED FUNCTION: linear_forwarddef linear_forward(A, W, b):"""Implement the linear part of a layer's forward propagation.Arguments:A -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)Returns:Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently"""### START CODE HERE ### (≈ 1 line of code)Z = np.dot(W,A)+b### END CODE HERE ###assert(Z.shape == (W.shape[0], A.shape[1]))cache = (A, W, b)return Z, cache
A, W, b = linear_forward_test_case()Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))
Z = [[ 3.26295337 -1.23429987]]

Expected output:

**Z** [[ 3.26295337 -1.23429987]]

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

  • Sigmoid: σ(Z)=σ(WA+b)=11+e(WA+b) . We have provided you with the sigmoid function. This function returns two items: the activation value “a” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = sigmoid(Z)
  • ReLU: The mathematical formula for ReLu is A=RELU(Z)=max(0,Z) . We have provided you with the relu function. This function returns two items: the activation value “A” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = relu(Z)

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

Exercise: Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: A[l]=g(Z[l])=g(W[l]A[l1]+b[l]) where the activation “g” can be sigmoid() or relu(). Use linear_forward() and the correct activation function.

# GRADED FUNCTION: linear_activation_forwarddef linear_activation_forward(A_prev, W, b, activation):"""Implement the forward propagation for the LINEAR->ACTIVATION layerArguments:A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache";stored for computing the backward pass efficiently"""if activation == "sigmoid":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev,W,b)A, activation_cache = sigmoid(Z)### END CODE HERE ###elif activation == "relu":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev,W,b)A, activation_cache = relu(Z)### END CODE HERE ###assert (A.shape == (W.shape[0], A_prev.shape[1]))cache = (linear_cache, activation_cache)return A, cache
A_prev, W, b = linear_activation_forward_test_case()A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("With sigmoid: A = " + str(A))A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("With ReLU: A = " + str(A))
With sigmoid: A = [[ 0.96890023  0.11013289]]
With ReLU: A = [[ 3.43896131  0.        ]]

Expected output:

**With sigmoid: A ** [[ 0.96890023 0.11013289]]
**With ReLU: A ** [[ 3.43896131 0. ]]

Note: In deep learning, the “[LINEAR->ACTIVATION]” computation is counted as a single layer in the neural network, not two layers.

d) L-Layer Model

For even more convenience when implementing the L -layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) L1 times, then follows that with one linear_activation_forward with SIGMOID.

这里写图片描述

Figure 2 : [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID model

Exercise: Implement the forward propagation of the above model.

Instruction: In the code below, the variable AL will denote A[L]=σ(Z[L])=σ(W[L]A[L1]+b[L]) . (This is sometimes also called Yhat, i.e., this is Y^ .)

Tips:
- Use the functions you had previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don’t forget to keep track of the caches in the “caches” list. To add a new value c to a list, you can use list.append(c).

# GRADED FUNCTION: L_model_forwarddef L_model_forward(X, parameters):"""Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computationArguments:X -- data, numpy array of shape (input size, number of examples)parameters -- output of initialize_parameters_deep()Returns:AL -- last post-activation valuecaches -- list of caches containing:every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)the cache of linear_sigmoid_forward() (there is one, indexed L-1)"""caches = []A = XL = len(parameters) // 2                  # number of layers in the neural network# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.for l in range(1, L):A_prev = A ### START CODE HERE ### (≈ 2 lines of code)A, cache = linear_activation_forward(A_prev,parameters['W' + str(l)],parameters['b' + str(l)], "relu")caches.append(cache)### END CODE HERE #### Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.### START CODE HERE ### (≈ 2 lines of code)AL, cache = linear_activation_forward(A,parameters['W' + str(L)],parameters['b' + str(L)], "sigmoid")caches.append(cache)### END CODE HERE ###assert(AL.shape == (1,X.shape[1]))return AL, caches
X, parameters = L_model_forward_test_case_2hidden()
AL, caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
AL = [[ 0.03921668  0.70498921  0.19734387  0.04728177]]
Length of caches list = 3
**AL** [[ 0.03921668 0.70498921 0.19734387 0.04728177]]
**Length of caches list ** 3

Great! Now you have a full forward propagation that takes the input X and outputs a row vector A[L] containing your predictions. It also records all intermediate values in “caches”. Using A[L] , you can compute the cost of your predictions.

5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

Exercise: Compute the cross-entropy cost J , using the following formula:

1mi=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))(7)

# GRADED FUNCTION: compute_costdef compute_cost(AL, Y):"""Implement the cost function defined by equation (7).Arguments:AL -- probability vector corresponding to your label predictions, shape (1, number of examples)Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)Returns:cost -- cross-entropy cost"""m = Y.shape[1]# Compute loss from aL and y.### START CODE HERE ### (≈ 1 lines of code)cost = -1/m*np.sum(Y*np.log(AL)+(1-Y)*np.log(1-AL),axis=1,keepdims=1)### END CODE HERE ###cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).assert(cost.shape == ())return cost
Y, AL = compute_cost_test_case()print("cost = " + str(compute_cost(AL, Y)))
cost = 0.41493159961539694

Expected Output:

**cost** 0.41493159961539694

6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:
这里写图片描述

Figure 3 : Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID
The purple blocks represent the forward propagation, and the red blocks represent the backward propagation.

dL(a[2],y)dz[1]=dL(a[2],y)da[2]da[2]dz[2]dz[2]da[1]da[1]dz[1](8)
In order to calculate the gradient dW[1]=LW[1] , you use the previous chain rule and you do dW[1]=dz[1]×z[1]W[1] . During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted. Equivalently, in order to calculate the gradient db[1]=Lb[1] , you use the previous chain rule and you do db[1]=dz[1]×z[1]b[1] . This is why we talk about **backpropagation**. !-->

Now, similar to forward propagation, you are going to build the backward propagation in three steps:
- LINEAR backward
- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID backward (whole model)

6.1 - Linear backward

For layer l , the linear part is: Z[l]=W[l]A[l1]+b[l] (followed by an activation).

Suppose you have already calculated the derivative dZ[l]=LZ[l] . You want to get (dW[l],db[l]dA[l1]) .

这里写图片描述

Figure 4

The three outputs (dW[l],db[l],dA[l]) are computed using the input dZ[l] .Here are the formulas you need:

dW[l]=LW[l]=1mdZ[l]A[l1]T(8)

db[l]=Lb[l]=1mi=1mdZ[l](i)(9)

dA[l1]=LA[l1]=W[l]TdZ[l](10)

Exercise: Use the 3 formulas above to implement linear_backward().

# GRADED FUNCTION: linear_backwarddef linear_backward(dZ, cache):"""Implement the linear portion of backward propagation for a single layer (layer l)Arguments:dZ -- Gradient of the cost with respect to the linear output (of current layer l)cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layerReturns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""A_prev, W, b = cachem = A_prev.shape[1]### START CODE HERE ### (≈ 3 lines of code)dW = 1/m*np.dot(dZ,A_prev.T)db = 1/m*np.sum(dZ,axis=1,keepdims=1)dA_prev = np.dot(W.T,dZ)### END CODE HERE ###assert (dA_prev.shape == A_prev.shape)assert (dW.shape == W.shape)assert (db.shape == b.shape)return dA_prev, dW, db
# Set up some test inputs
dZ, linear_cache = linear_backward_test_case()dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
dA_prev = [[ 0.51822968 -0.19517421][-0.40506361  0.15255393][ 2.37496825 -0.89445391]]
dW = [[-0.10076895  1.40685096  1.64992505]]
db = [[ 0.50629448]]

Expected Output:

**dA_prev** [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]]
**dW** [[-0.10076895 1.40685096 1.64992505]]
**db** [[ 0.50629448]]

6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: linear_backward and the backward step for the activation linear_activation_backward.

To help you implement linear_activation_backward, we provided two backward functions:
- sigmoid_backward: Implements the backward propagation for SIGMOID unit. You can call it as follows:

dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: Implements the backward propagation for RELU unit. You can call it as follows:
dZ = relu_backward(dA, activation_cache)

If g(.) is the activation function,
sigmoid_backward and relu_backward compute

dZ[l]=dA[l]g(Z[l])(11)
.

Exercise: Implement the backpropagation for the LINEAR->ACTIVATION layer.

# GRADED FUNCTION: linear_activation_backwarddef linear_activation_backward(dA, cache, activation):"""Implement the backward propagation for the LINEAR->ACTIVATION layer.Arguments:dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficientlyactivation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""linear_cache, activation_cache = cacheif activation == "relu":### START CODE HERE ### (≈ 2 lines of code)dZ = relu_backward(dA, activation_cache)dA_prev, dW, db = linear_backward(dZ,linear_cache)### END CODE HERE ###elif activation == "sigmoid":### START CODE HERE ### (≈ 2 lines of code)dZ = sigmoid_backward(dA,activation_cache)dA_prev, dW, db = linear_backward(dZ,linear_cache)### END CODE HERE ###return dA_prev, dW, db
AL, linear_activation_cache = linear_activation_backward_test_case()dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
sigmoid:
dA_prev = [[ 0.11017994  0.01105339][ 0.09466817  0.00949723][-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]relu:
dA_prev = [[ 0.44090989  0.        ][ 0.37883606  0.        ][-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]

Expected output with sigmoid:

dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]]
dW [[ 0.10266786 0.09778551 -0.01968084]]
db [[-0.05729622]]

Expected output with relu:

dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]
dW [[ 0.44513824 0.37371418 -0.10478989]]
db [[-0.20837892]]

6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the L_model_backward function, you will iterate through all the hidden layers backward, starting from layer L . On each step, you will use the cached values for layer l to backpropagate through layer l . Figure 5 below shows the backward pass.

这里写图片描述

Figure 5 : Backward pass

* Initializing backpropagation*:
To backpropagate through this network, we know that the output is,
A[L]=σ(Z[L]). Your code thus needs to compute dAL =LA[L] .
To do so, use this formula (derived using calculus which you don’t need in-depth knowledge of):

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :

grads["dW"+str(l)]=dW[l](15)

For example, for l=3 this would store dW[l] in grads["dW3"].

Exercise: Implement backpropagation for the [LINEAR->RELU] × (L-1) -> LINEAR -> SIGMOID model.

# GRADED FUNCTION: L_model_backwarddef L_model_backward(AL, Y, caches):"""Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID groupArguments:AL -- probability vector, output of the forward propagation (L_model_forward())Y -- true "label" vector (containing 0 if non-cat, 1 if cat)caches -- list of caches containing:every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])Returns:grads -- A dictionary with the gradientsgrads["dA" + str(l)] = ... grads["dW" + str(l)] = ...grads["db" + str(l)] = ... """grads = {}L = len(caches) # the number of layersm = AL.shape[1]Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL# Initializing the backpropagation### START CODE HERE ### (1 line of code)dAL =  - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))### END CODE HERE #### Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]### START CODE HERE ### (approx. 2 lines)current_cache = caches[L-1]grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")### END CODE HERE ###for l in reversed(range(L-1)):# lth layer: (RELU -> LINEAR) gradients.# Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines)current_cache = caches[l]dA_prev_temp, dW_temp, db_temp =  linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")grads["dA" + str(l + 1)] = dA_prev_tempgrads["dW" + str(l + 1)] = dW_tempgrads["db" + str(l + 1)] = db_temp### END CODE HERE ###return grads
AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print_grads(grads)
dW1 = [[ 0.41010002  0.07807203  0.13798444  0.10502167][ 0.          0.          0.          0.        ][ 0.05283652  0.01005865  0.01777766  0.0135308 ]]
db1 = [[-0.22007063][ 0.        ][-0.02835349]]
dA1 = [[ 0.12913162 -0.44014127][-0.14175655  0.48317296][ 0.01663708 -0.05670698]]

Expected Output

dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 [[-0.22007063] [ 0. ] [-0.02835349]]
dA1 [[ 0.12913162 -0.44014127] [-0.14175655 0.48317296] [ 0.01663708 -0.05670698]]

6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

W[l]=W[l]α dW[l](16)

b[l]=b[l]α db[l](17)

where α is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

Exercise: Implement update_parameters() to update your parameters using gradient descent.

Instructions:
Update parameters using gradient descent on every W[l] and b[l] for l=1,2,...,L .

# GRADED FUNCTION: update_parametersdef update_parameters(parameters, grads, learning_rate):"""Update parameters using gradient descentArguments:parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backwardReturns:parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ..."""L = len(parameters) // 2 # number of layers in the neural network# Update rule for each parameter. Use a for loop.### START CODE HERE ### (≈ 3 lines of code)for l in range(1,L+1):parameters["W" + str(l)] = parameters["W" + str(l)] - learning_rate * grads["dW" + str(l)]parameters["b" + str(l)] = parameters["b" + str(l)] - learning_rate * grads["db" + str(l)]### END CODE HERE ###return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008][-1.76569676 -0.80627147  0.51115557 -1.18258802][-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241][-1.28888275][ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

Expected Output:

W1 [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 [[-0.04659241] [-1.28888275] [ 0.53405496]]
W2 [[-0.55569196 0.0354055 1.32964895]]
b2 [[-0.84610769]]

7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:
- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!


http://chatgpt.dhexx.cn/article/h1DTGHTa.shtml

相关文章

html聊天界面

先看效果图 参考网址&#xff1a;https://desk.v5kf.com/desk/kehu_zh.html html代码 html lang"zh"> <head> <meta charset"utf-8"> <meta http-equiv"X-UA-Compatible" content"IEedge"> <me…

PCIE体系结构基础和Linux PCI设备注册过程的实现

根据百度百科的解释,PCIE(peripheral component interconnect express)是一种高速串行计算机扩展总线标准,它原来的名称为“3GIO”,是由英特尔在2001年提出的,旨在替代旧的PCI,PCI-X和AGP总线标准。PCIe属于高速串行点对点双通道高带宽传输,所连接的设备分配独享通道带宽…

krita windows编译源码

Qt系列文章目录 文章目录 Qt系列文章目录前言一、krita二、krita源码编译1. Windows下编译1.编译准备2. 相关命令 使用CMake编译krita 重新编译使用CMkae bash&#xff1a;find_package(Zug REQUIRED) 前言 最近使用Qt处理图像&#xff0c;要实现一些Photoshop的功能&#xff…

Yolov5-Lite + Sort算法实现边缘目标跟踪

文章目录 前言项目结构Sort算法实现卡尔曼跟踪器工具类多目标跟踪器整合前言 昨天挖了个坑,那么今天的话把坑填上,只要是实现Sort算法和Yolov5-Lite的一个整合。当然先前的话,我们在Yolov3–Tiny的时候,也做了一个,不过当时的话,有几个问题没有解决。第一就是当时以中心…

如何用剪映翻译英文字幕?

需要借助第三方工具。 这次是小编在上个版本的基础上进行升级&#xff0c;支持并兼容剪映最新版本3.3。 之前小编方包的那款只支持2.3.0以下的。这次剪映pc端所有版本都兼容。可以翻译国外的英文的视频&#xff01;比如&#xff1a;tik~、某管的视频~ 工具如下图 使用教程&am…

英文字幕视频翻译成中文字幕

参考 教程 https://www.bilibili.com/read/cv2223816/ https://www.bilibili.com/video/av34725774 1、下载英文视频 例如下面这个视频 QGIS提取DSM数据中房屋的屋顶类型和高度 2、导出英文字幕并重命名为bcc格式 参考 https://www.bilibili.com/read/cv2223816/ 3、bcc格…

不限网站的视频字幕实时翻译工具(视频只要有声音就可以翻译)

一个实时中英互译的软件 问题 经常在网上搜索一些我们需要的学习资源&#xff0c;会遇到一些非常好的视频资源&#xff0c;可惜是英文的&#xff0c;这时&#xff0c;像我这样英文不是很好的同学就该犯难了。再找别的资源会很麻烦。 像有一些网站会自带自动字母和自动翻译功…

python自动翻译视频字幕_音视频自动字幕生成(翻译)—[autosub]

国外有些视频无中文字幕找字幕也不方便 此工具可生成*.srt格式字幕和json autosub依赖ffmpeg 安装环境:VUlTR Ubuntu 18.04系统 地域:日本 充值10刀送10刀 安装ffmpeg [sudo] apt-get install ffmpeg 安装python [sudo] apt-get install python-pip 安装autosub pip…

体验SDL Trados 2021 翻译视频字幕

对于视频字幕翻译以往多采用的是以下几种方式&#xff1a; 直接打开翻译ASS, SRT等字幕文件 文本文件直接操作有风险可能会破坏时间轴或样式使用字幕工具&#xff0c;人人译世界&#xff0c;字幕通等第三方工具打开编辑字幕 不能使用到翻译记忆库的优势第三方工具结合SDL Trad…

工具-python实现电影字幕的自动翻译

文章目录 前言思路效果如图实现第二种方案第一种方案第一种方案 中英文翻译想白嫖中英文翻译&#xff1f;如何将ocr识别到的没有空格文本正确分割&#xff1f;python截屏 前言 看一些电影&#xff0c;发现只是标注了字幕而没有中文翻译&#xff0c;当然也没有字幕文件&#xf…

如何让纯英文字幕的视屏 实时翻译

情景&#xff1a; 你有一个视屏&#xff0c;只有英文字幕&#xff0c;恰好像我一样英文不怎么样&#xff0c;可以试着用下面的方法。当然&#xff0c;对应的翻译是机翻的&#xff0c;接受不了请忽略。 步骤&#xff1a; 需要将原视频下载下来&#xff1b;有的时候&#xff0c…

剪映PC版英文字幕翻译最新方法(中英互译)

原文地址 剪映PC版英文字幕翻译最新方法&#xff08;中英互译&#xff09; – 方包博客 – java|python|前端开发|运维|电商|ui设计剪映PC版英文字幕翻译最新方法&#xff08;中英互译&#xff09;https://www.fang1688.cn/ziyuan/3431.html 我的是剪映 v3.3.0版本。旧版不支持…

推荐一款自己开发的剪映字幕翻译工具

点击上方"优派编程"选择“加入星标”&#xff0c;第一时间关注原创干货 最新的剪映英文转中文字幕翻译工具 https://www.fang1688.cn/python/3259.html 小编方包今天介绍剪映翻译工具的教程 之前的那款剪映字幕翻译工具不是方包我本人写的。听各位神通广大的网友们反…

字幕翻译,如何合并和拆分过分断句

我时常会接到字幕翻译项目&#xff0c;大多是英到中。如果字数比较多&#xff0c;我通常会问客户能不能增加一两个小时的预算&#xff0c;原因很简单&#xff1a;过分断句(over-segmentation)对译员很不友好&#xff0c;特别是在使用CAT (computer-aided translation)的情况下…

视频字幕翻译

字幕是指以文字形式显示电视、电影、舞台作品中的对话等非影像内容&#xff0c;也泛指影视作品后期加工的文字。在电影银幕或电视机荧光屏下方出现的解说文字以及种种文字&#xff0c;如影片的片名、演职员表、唱词、对白、说明词以有人物介绍、地名和年代等都称为字幕。 近年来…

英文视频实时字幕翻译

本视频是基于livecaption这个软件&#xff08;免安装&#xff09;来实现的。软件下载地址阅读后面可见。 使用阿里云进行语音识别&#xff0c;使用腾讯云进行实时翻译。 一、阿里云 阿里云官网&#xff1a;https://www.aliyun.com/ 没有注册和实名认证的&#xff0c;请注册…

翻译视频字幕的软件叫什么?安利这几个软件给你

如今有很多小伙伴都喜欢追一些韩剧、美剧、泰剧等等外国影片&#xff0c;但是同时也会出现一个问题&#xff0c;那就是有些片段听不懂的问题&#xff0c;很多的影片其实是没有中文字幕的&#xff0c;这时候&#xff0c;很多小伙伴就会直接放弃观看了&#xff0c;其实我们只需要…

怎么把英文字幕翻译成中文?快把这些方法收好

在日常的学习工作中&#xff0c;我们偶尔会接触到一些英文文件&#xff0c;这些文件里面通常都会夹杂着一些比较深奥的词汇。小伙伴们平时遇到这些看不懂的词汇会怎么办呢&#xff1f;是一个词一个词的翻译吗&#xff1f;这样子是可以理解词的意思&#xff0c;可是要带入句子中…

使用Trinity 软件进行拼接(无参转录组)

文章背景&#xff08;此背景非彼背景&#xff09; 本文主要是对Trinity软件的背景、安装以及参数做一个详细的介绍。别问为什么没有接着做 02——转录组分析——软件下载&#xff1b;因为发现师兄留下来的数据是需要用无参转录组进行分析的。。。。内心真的毫无波澜。。。。。…

[转]魔兽世界私服Trinity,从源码开始

转自&#xff1a;http://log4think.com/setup_wow_private_server/ 缘起因由 在一个无所事事的周末下午&#xff0c;突然想起魔兽世界&#xff0c;官方的账号很久没有上了&#xff0c;里面的大小号现在连满级都不是。以前曾经搭过传奇和星际争霸战网的私服自娱自乐&#xff0c;…