机器学习:维特比算法(Viterbi Algorithm)

article/2025/10/3 23:57:20

一、维特比算法(Viterbi Algorithm)讲解方式01:篱笆网络(Lattice)的最短路径问题

已知下图的篱笆网络,每个节点之间的数字表示相邻节点之间的距离,举个例子来说,如果我走,这个距离是。那么如果让你从A走到E,最短路径是哪一条呢?
在这里插入图片描述
显然大家都知道,通过穷举的方法是很容易得到最短路径,可是问题就在于如果穷举的话,需要的加法次数不用算你也知道实在是太多啦(每条路径需要计算次加法,一共条路径共次计算)!像这种没几层的篱笆网络也就罢了,如果每层13个节点,一共12层(然而这个规模对于标注问题来说也依然根本不算什么),可想而知那个线有多乱,如果仅仅穷举的话,这个计算量(大致是每条次计算,一共条路径共大约次计算)怕是超级计算机也吃不消。

如下图,假如你从S和E之间找一条最短的路径,除了遍历完所有路径,还有什么更好的方法?答案:viterbi (维特比)算法。

在这里插入图片描述

viterbi维特比算法解决的是篱笆型的图的最短路径问题,图的节点按列组织,每列的节点数量可以不一样,每一列的节点只能和相邻列的节点相连,不能跨列相连,节点之间有着不同的距离,距离的值就不在图上一一标注出来了,大家自行脑补。

为了找出S到E之间的最短路径,我们先从S开始从左到右一列一列地来看。

首先起点是S,从S到A列的路径有三种可能:S-A1、S-A2、S-A3,如下图:

在这里插入图片描述

我们不能武断地说S-A1、S-A2、S-A3中的哪一段必定是全局最短路径中的一部分,目前为止任何一段都有可能是全局最短路径的备选项。

我们继续往右看,到了B列。按B列的B1、B2、B3逐个分析。

先看B1:

在这里插入图片描述
在这里插入图片描述

如上图,经过B1的所有路径只有3条:

S-A1-B1

S-A2-B1

S-A3-B1

以上这三条路径,各节点距离加起来对比一下,我们就可以知道其中哪一条是最短的。假设S-A3-B1是最短的,那么我们就知道了经过B1的所有路径当中S-A3-B1是最短的,其它两条路径路径S-A1-B1和S-A2-B1都比S-A3-B1长,绝对不是目标答案,可以大胆地删掉了。删掉了不可能是答案的路径,就是viterbi算法(维特比算法)的重点,因为后面我们再也不用考虑这些被删掉的路径了。现在经过B1的所有路径只剩一条路径了,如下图:

在这里插入图片描述

接下来,我们继续看B2:

在这里插入图片描述

同理,如上图,经过B2的路径有3条:

S-A1-B2

S-A2-B2

S-A3-B2

这三条路径中,各节点距离加起来对比一下,我们肯定也可以知道其中哪一条是最短的,假设S-A1-B2是最短的,那么我们就知道了经过B2的所有路径当中S-A1-B2是最短的,其它两条路径路径S-A2-B2和S-A3-B1也可以删掉了。经过B2所有路径只剩一条,如下图:

在这里插入图片描述

接下来我们继续看B3:

在这里插入图片描述

同理,如上图,经过B3的路径也有3条:

S-A1-B3

S-A2-B3

S-A3-B3

这三条路径中我们也肯定可以算出其中哪一条是最短的,假设S-A2-B3是最短的,那么我们就知道了经过B3的所有路径当中S-A2-B3是最短的,其它两条路径路径S-A1-B3和S-A3-B3也可以删掉了。经过B3的所有路径只剩一条,如下图:

在这里插入图片描述
现在对于B列的所有节点我们都过了一遍,B列的每个节点我们都删除了一些不可能是答案的路径,看看我们剩下哪些备选的最短路径,如下图:

在这里插入图片描述
上图是我们删掉了其它不可能是最短路径的情况,留下了三个有可能是最短的路径:S-A3-B1、S-A1-B2、S-A2-B3。现在我们将这三条备选的路径放在一起汇总到下图:

在这里插入图片描述
S-A3-B1、S-A1-B2、S-A2-B3都有可能是全局的最短路径的备选路径,我们还没有足够的信息判断哪一条一定是全局最短路径的子路径。

如果我们你认为没毛病就继续往下看C列,如果不理解,回头再看一遍,前面的步骤决定你是否能看懂viterbi算法(维特比算法)。

接下来讲到C列了,类似上面说的B列,我们从C1、C2、C3一个个节点分析。

经过C1节点的路径有:

S-A3-B1-C1、

S-A1-B2-C1、

S-A2-B3-C1

在这里插入图片描述
和B列的做法一样,从这三条路径中找到最短的那条(假定是S-A3-B1-C1),其它两条路径同样道理可以删掉了。那么经过C1的所有路径只剩一条,如下图:

在这里插入图片描述

同理,我们可以找到经过C2和C3节点的最短路径,汇总一下:

在这里插入图片描述
到达C列时最终也只剩3条备选的最短路径,我们仍然没有足够信息断定哪条才是全局最短。

最后,我们继续看E节点,才能得出最后的结论。

到E的路径也只有3种可能性:

在这里插入图片描述
E点已经是终点了,我们稍微对比一下这三条路径的总长度就能知道哪条是最短路径了。

在这里插入图片描述
在效率方面相对于粗暴地遍历所有路径,viterbi 维特比算法到达每一列的时候都会删除不符合最短路径要求的路径,大大降低时间复杂度。

二、维特比算法(Viterbi Algorithm)讲解方式02:分词算法

维特比算法(Viterbi Algorithm)本质上还是动态规划(Dynamic Programming)

例子:“经常有意见分歧”

我们仍然是有以下几个数据:

词典:["经常","有","意见","意","见","有意见","分歧","分","歧"]
概率P(x):{"经常":0.08,"有":0.04,"意见":0.08,"意":0.01,"见":0.005,"有意见":0.002,"分歧":0.04,"分":0.02, "歧":0.005}
-ln(P(x)):{"经常":2.52,"有":3.21,"意见":2.52,"意":4.6,"见":5.29,"有意见":6.21,"分歧":3.21,"分":3.9, "歧":5.29}

如果某个词不在字典中,我们将认为其 − l n [ P ( x ) ] −ln[P(x)] ln[P(x)] 值为20。

我们构建以下的DAG(有向图),每一个边代表一个词,我们将 − l n [ P ( x ) ] -ln[P(x)] ln[P(x)]的值标到边上,
在这里插入图片描述

− l n [ P ( x ) ] −ln[P(x)] ln[P(x)] 的最小值问题,就转变为求最短路径的问题。

由图可以看出,路径 0—>②—>③—>⑤—>⑦ 所求的值最小,所以其就是最优结果:经常 / 有 / 意见 / 分歧

那么我们应该怎样快速计算出来这个结果呢?

我们设 f ( n ) f(n) f(n) 代表从起点 0 0 0 到结点 n n n 的最短路径的值,所以我们想求的就是 f ( 7 ) f(7) f(7),从DAG图中可以看到,到结点⑦有2条路径:

  • 从结点⑤—>结点⑦: f ( 7 ) = f ( 5 ) + 3.21 f(7)=f(5)+3.21 f(7)=f(5)+3.21
  • 从结点⑥—>结点⑦: f ( 7 ) = f ( 6 ) + 5.29 f(7)=f(6)+5.29 f(7)=f(6)+5.29

我们应该从2条路径中选择路径短的。

在上面的第1条路径中, f ( 5 ) f(5) f(5) 还是未知的,我们要 f ( 5 ) f(5) f(5),同理我们发现到结点⑤的路径有3条路径:

  • 从结点②—>结点⑤: f ( 5 ) = f ( 2 ) + 6.21 f(5)=f(2)+6.21 f(5)=f(2)+6.21
  • 从结点③—>结点⑤: f ( 5 ) = f ( 3 ) + 2.52 f(5)=f(3)+2.52 f(5)=f(3)+2.52
  • 从结点④—>结点⑤: f ( 5 ) = f ( 4 ) + 20 f(5)=f(4)+20 f(5)=f(4)+20

我们同样从3条路径中选择路径短的。以此类推,直到结点0,所有的路径值都可以算出来。我们维护一个列表来表示 f ( n ) f(n) f(n) 的各值:

结点1234567
f(n)202.525.7325.738.2512.511.46
结点的上一个结点00

第2行代表从起点0到该结点的最短路径的值,第3行代表在最短路径中的该节点的上一个结点。

通过表,我们可以找到结点⑦的上一个结点⑤,结点⑤的上一个结点③,结点③的上一个结点②,结点②的上一个结点0,即路径:0—>②—>③—>⑤—>⑦

# -*- coding: utf-8 -*-
import math
import collections# 维特比算法(viterbi)
def word_segmentation(text):####################################################################################################################################################################word_dictionaries = ["经常", "有", "意见", "意", "见", "有意见", "分歧", "分", "歧"]probability = {"经常": 0.08, "有": 0.04, "意见": 0.08, "意": 0.01, "见": 0.005, "有意见": 0.002, "分歧": 0.04, "分": 0.02, "歧": 0.005}probability_ln = {key: -math.log(probability[key]) for key in probability}# probability_ln = {'经常': 2.5257286443082556, '有': 3.2188758248682006, '意见': 2.5257286443082556, '意': 4.605170185988091, '见': 5.298317366548036, '有意见': 6.214608098422191, '分歧': 3.2188758248682006, '分': 3.912023005428146, '歧': 5.298317366548036}print("probability_ln = {0}".format(probability_ln))# 构造图的代码并没有实现,以下只是手工建立的图【如果某个词不在字典中,我们将认为其 −ln[P(x)] 值为20。】,为了说明 维特比算法##################################################################################################################################################################### 有向五环图,存储的格式:key是结点名,value是一个结点的所有上一个结点(以及边上的权重)graph = {0: {0: (0, "")},1: {0: (20, "经")},2: {0: (2.52, "经常"), 1: (20, "常")},3: {2: (3.21, "有")},4: {3: (20, "意")},5: {2: (6.21, "有意见"), 3: (2.52, "意见"), 4: (5.30, "见")},6: {5: (3.9, "分")},7: {5: (3.21, "分歧"), 6: (5.29, "歧")}}# =====================================================================利用“维特比算法”构建各个节点的最优路径:开始=====================================================================print("#"*50, "利用“维特比算法”构建各个节点的最优路径:开始", "#"*50)f = collections.OrderedDict()  # 保存结点n的f(n)以及实现f(n)的上一个结点【f(n):代表从起点 0 到结点 n 的最短路径的值】for key, value in graph.items():  # 遍历有向图graph中的所有节点print("\nkey = {0}----value = {1}".format(key, value))tuple_temp_list = []for pre_node_key, pre_node_value in value.items():  # 遍历当前节点的所有上一个节点【pre_node_key:上一个节点的节点号,pre_node_value:本节点距离上一个节点的距离】# print("本节点的节点号:key = {0}----上一个节点的节点号:pre_node_key = {1}----本节点距离上一个节点的距离:pre_node_value = {2}".format(key, pre_node_key, pre_node_value))distance_from_0 = 0if pre_node_key not in f:  # 当遍历到0节点时,该节点的上一个结点还没有计算f(n);distance_from_0 = pre_node_value[0]  # 0节点的上一节点(依旧时0节点)的距离else:  # 当遍历到0节点之后的节点distance_from_0 = pre_node_value[0] + f[pre_node_key][0]  # pre_node_value[0]:当前节点距离上一节点的距离;f[pre_node_key][0]:当前节点的上一节点“pre_node_key”距离0节点的最短距离print("本节点的节点号:key = {0}----本节点可触及的上一节点号:pre_node_key = {1}----本节点距离上一个节点“节点{1}”的距离:pre_node_value = {2}----上一节点“节点{1}”距离0节点的最短距离:f[pre_node_key][0] = {3}----本节点路径上一节点“节点{1}”距离0节点的距离:distance_from_0 = {4}".format(key, pre_node_key, pre_node_value, f[pre_node_key][0], distance_from_0))tuple_temp = (distance_from_0, pre_node_key)  # 【pre_node_value[0]:本节点距离0节点的最短距离;pre_node_key:本节点实现距离0节点距离最短时的上一个节点的节点号】tuple_temp_list.append(tuple_temp)min_temp = min(tuple_temp_list)  # 比较比较当前节点路径所触及的所有上一节点到达0节点的距离,得出当前节点 key 距离0节点的最短距离# min_temp = min((pre_node_value[0], pre_node_key) if pre_node_key not in f else (pre_node_value[0] + f[pre_node_key][0], pre_node_key) for pre_node_key, pre_node_value in value.items())  # 高阶写法print("本节点的节点号:key = {0}----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = {1}----当前节点 key 距离0节点的最短距离:min_temp = {2}".format(key, tuple_temp_list, min_temp))f[key] = min_tempprint("将当前节点{0}距离0节点的(最短距离,路径的节点号)= ({0},{1}) 加入f---->f = {2}".format(key, min_temp, f))  # f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2)), (4, (25.73, 3)), (5, (8.25, 3)), (6, (12.15, 5)), (7, (11.46, 5))])print("#" * 50, "利用“维特比算法”构建各个节点的最优路径:结束", "#" * 50)# =====================================================================利用“维特比算法”构建各个节点的最优路径:结束=====================================================================# =====================================================================提取最优最优路径:开始=====================================================================print("\n", "#" * 50, "提取最优路径:开始", "#" * 50)last = next(reversed(f))  # 最后一个结点7first = next(iter(f))  # 第一个结点0path_result = [last, ]  # 保存路径,最后一个结点先添入pre_last = f[last]  # 最后一个结点的所有前一个结点print("最后一个结点7:last = {0}----第一个结点0:first = {1}----初始化最优路径:path_result = {2}----最后一个结点的所有前一个结点:pre_last = {3}".format(last, first, path_result, pre_last))while pre_last[1] is not first:  # 没到达第一个结点就一直循环,查找上一个节点的上一个节点号path_result.append(pre_last[1])  # 加入一个路径结点Xpre_last = f[pre_last[1]]  # 定位到路径结点X的上一个结点path_result.append(first)  # 第一个结点添入print("最优路径:path_result = {0}".format(path_result))  # 结果:[7, 5, 3, 2, 0]print("#" * 50, "提取最优路径:结束", "#" * 50)# =====================================================================提取最优最优路径:结束=====================================================================# =====================================================================通过最优路径得到分词结果:开始=====================================================================print("\n", "#" * 50, "通过最优路径得到分词结果:开始", "#" * 50)text_result = []for index, num in enumerate(path_result):  # 找到路径上边的词if index + 1 == len(path_result):breakword = graph[num][path_result[index + 1]][1]print("最优路径:path_result = {0}----index = {1}----当前节点号:num = {2}----在最优路径里,当前节点号的上一个节点号:path_result[index + 1] = {3}----当前节点号{2}与上一节点号{3}之间的词汇:{4}".format(path_result, index, num, path_result[index + 1], word))text_result.append(word)print("text_result = {0}".format(text_result))text_result.reverse()  # 翻转一下print("翻转后:text_result = {0}".format(text_result))print("#" * 50, "通过最优路径得到分词结果:结束", "#" * 50)return "".join(word + "/" for word in text_result)# =====================================================================通过最优路径得到分词结果:结束=====================================================================if __name__ == '__main__':content = "经常有意见分歧"word_segmentation_result = word_segmentation(content)print("word_segmentation_result:", word_segmentation_result)

打印结果:

probability_ln = {'经常': 2.5257286443082556, '有': 3.2188758248682006, '意见': 2.5257286443082556, '意': 4.605170185988091, '见': 5.298317366548036, '有意见': 6.214608098422191, '分歧': 3.2188758248682006, '分': 3.912023005428146, '歧': 5.298317366548036}
################################################## 利用“维特比算法”构建各个节点的最优路径:开始 ##################################################
key = 0----value = {0: (0, '')}
本节点的节点号:key = 0----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(0, 0)]----当前节点 key 距离0节点的最短距离:min_temp = (0, 0)
将当前节点0距离0节点的(最短距离,路径的节点号)= (0,(0, 0)) 加入f---->f = OrderedDict([(0, (0, 0))])key = 1----value = {0: (20, '经')}
本节点的节点号:key = 1----本节点可触及的上一节点号:pre_node_key = 0----本节点距离上一个节点“节点0”的距离:pre_node_value = (20, '经')----上一节点“节点0”距离0节点的最短距离:f[pre_node_key][0] = 0----本节点路径上一节点“节点0”距离0节点的距离:distance_from_0 = 20
本节点的节点号:key = 1----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(20, 0)]----当前节点 key 距离0节点的最短距离:min_temp = (20, 0)
将当前节点1距离0节点的(最短距离,路径的节点号)= (1,(20, 0)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0))])key = 2----value = {0: (2.52, '经常'), 1: (20, '常')}
本节点的节点号:key = 2----本节点可触及的上一节点号:pre_node_key = 0----本节点距离上一个节点“节点0”的距离:pre_node_value = (2.52, '经常')----上一节点“节点0”距离0节点的最短距离:f[pre_node_key][0] = 0----本节点路径上一节点“节点0”距离0节点的距离:distance_from_0 = 2.52
本节点的节点号:key = 2----本节点可触及的上一节点号:pre_node_key = 1----本节点距离上一个节点“节点1”的距离:pre_node_value = (20, '常')----上一节点“节点1”距离0节点的最短距离:f[pre_node_key][0] = 20----本节点路径上一节点“节点1”距离0节点的距离:distance_from_0 = 40
本节点的节点号:key = 2----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(2.52, 0), (40, 1)]----当前节点 key 距离0节点的最短距离:min_temp = (2.52, 0)
将当前节点2距离0节点的(最短距离,路径的节点号)= (2,(2.52, 0)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0))])key = 3----value = {2: (3.21, '有')}
本节点的节点号:key = 3----本节点可触及的上一节点号:pre_node_key = 2----本节点距离上一个节点“节点2”的距离:pre_node_value = (3.21, '有')----上一节点“节点2”距离0节点的最短距离:f[pre_node_key][0] = 2.52----本节点路径上一节点“节点2”距离0节点的距离:distance_from_0 = 5.73
本节点的节点号:key = 3----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(5.73, 2)]----当前节点 key 距离0节点的最短距离:min_temp = (5.73, 2)
将当前节点3距离0节点的(最短距离,路径的节点号)= (3,(5.73, 2)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2))])key = 4----value = {3: (20, '意')}
本节点的节点号:key = 4----本节点可触及的上一节点号:pre_node_key = 3----本节点距离上一个节点“节点3”的距离:pre_node_value = (20, '意')----上一节点“节点3”距离0节点的最短距离:f[pre_node_key][0] = 5.73----本节点路径上一节点“节点3”距离0节点的距离:distance_from_0 = 25.73
本节点的节点号:key = 4----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(25.73, 3)]----当前节点 key 距离0节点的最短距离:min_temp = (25.73, 3)
将当前节点4距离0节点的(最短距离,路径的节点号)= (4,(25.73, 3)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2)), (4, (25.73, 3))])key = 5----value = {2: (6.21, '有意见'), 3: (2.52, '意见'), 4: (5.3, '见')}
本节点的节点号:key = 5----本节点可触及的上一节点号:pre_node_key = 2----本节点距离上一个节点“节点2”的距离:pre_node_value = (6.21, '有意见')----上一节点“节点2”距离0节点的最短距离:f[pre_node_key][0] = 2.52----本节点路径上一节点“节点2”距离0节点的距离:distance_from_0 = 8.73
本节点的节点号:key = 5----本节点可触及的上一节点号:pre_node_key = 3----本节点距离上一个节点“节点3”的距离:pre_node_value = (2.52, '意见')----上一节点“节点3”距离0节点的最短距离:f[pre_node_key][0] = 5.73----本节点路径上一节点“节点3”距离0节点的距离:distance_from_0 = 8.25
本节点的节点号:key = 5----本节点可触及的上一节点号:pre_node_key = 4----本节点距离上一个节点“节点4”的距离:pre_node_value = (5.3, '见')----上一节点“节点4”距离0节点的最短距离:f[pre_node_key][0] = 25.73----本节点路径上一节点“节点4”距离0节点的距离:distance_from_0 = 31.03
本节点的节点号:key = 5----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(8.73, 2), (8.25, 3), (31.03, 4)]----当前节点 key 距离0节点的最短距离:min_temp = (8.25, 3)
将当前节点5距离0节点的(最短距离,路径的节点号)= (5,(8.25, 3)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2)), (4, (25.73, 3)), (5, (8.25, 3))])key = 6----value = {5: (3.9, '分')}
本节点的节点号:key = 6----本节点可触及的上一节点号:pre_node_key = 5----本节点距离上一个节点“节点5”的距离:pre_node_value = (3.9, '分')----上一节点“节点5”距离0节点的最短距离:f[pre_node_key][0] = 8.25----本节点路径上一节点“节点5”距离0节点的距离:distance_from_0 = 12.15
本节点的节点号:key = 6----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(12.15, 5)]----当前节点 key 距离0节点的最短距离:min_temp = (12.15, 5)
将当前节点6距离0节点的(最短距离,路径的节点号)= (6,(12.15, 5)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2)), (4, (25.73, 3)), (5, (8.25, 3)), (6, (12.15, 5))])key = 7----value = {5: (3.21, '分歧'), 6: (5.29, '歧')}
本节点的节点号:key = 7----本节点可触及的上一节点号:pre_node_key = 5----本节点距离上一个节点“节点5”的距离:pre_node_value = (3.21, '分歧')----上一节点“节点5”距离0节点的最短距离:f[pre_node_key][0] = 8.25----本节点路径上一节点“节点5”距离0节点的距离:distance_from_0 = 11.46
本节点的节点号:key = 7----本节点可触及的上一节点号:pre_node_key = 6----本节点距离上一个节点“节点6”的距离:pre_node_value = (5.29, '歧')----上一节点“节点6”距离0节点的最短距离:f[pre_node_key][0] = 12.15----本节点路径上一节点“节点6”距离0节点的距离:distance_from_0 = 17.44
本节点的节点号:key = 7----当前节点路径所触及的所有上一节点到达0节点的距离:tuple_temp_list = [(11.46, 5), (17.44, 6)]----当前节点 key 距离0节点的最短距离:min_temp = (11.46, 5)
将当前节点7距离0节点的(最短距离,路径的节点号)= (7,(11.46, 5)) 加入f---->f = OrderedDict([(0, (0, 0)), (1, (20, 0)), (2, (2.52, 0)), (3, (5.73, 2)), (4, (25.73, 3)), (5, (8.25, 3)), (6, (12.15, 5)), (7, (11.46, 5))])
################################################## 利用“维特比算法”构建各个节点的最优路径:结束 #################################################################################################### 提取最优路径:开始 ##################################################
最后一个结点7:last = 7----第一个结点0:first = 0----初始化最优路径:path_result = [7]----最后一个结点的所有前一个结点:pre_last = (11.46, 5)
最优路径:path_result = [7, 5, 3, 2, 0]
################################################## 提取最优路径:结束 #################################################################################################### 通过最优路径得到分词结果:开始 ##################################################
最优路径:path_result = [7, 5, 3, 2, 0]----index = 0----当前节点号:num = 7----在最优路径里,当前节点号的上一个节点号:path_result[index + 1] = 5----当前节点号7与上一节点号5之间的词汇:分歧
最优路径:path_result = [7, 5, 3, 2, 0]----index = 1----当前节点号:num = 5----在最优路径里,当前节点号的上一个节点号:path_result[index + 1] = 3----当前节点号5与上一节点号3之间的词汇:意见
最优路径:path_result = [7, 5, 3, 2, 0]----index = 2----当前节点号:num = 3----在最优路径里,当前节点号的上一个节点号:path_result[index + 1] = 2----当前节点号3与上一节点号2之间的词汇:有
最优路径:path_result = [7, 5, 3, 2, 0]----index = 3----当前节点号:num = 2----在最优路径里,当前节点号的上一个节点号:path_result[index + 1] = 0----当前节点号2与上一节点号0之间的词汇:经常
text_result = ['分歧', '意见', '有', '经常']
翻转后:text_result = ['经常', '有', '意见', '分歧']
################################################## 通过最优路径得到分词结果:结束 ##################################################
word_segmentation_result: 经常//意见/分歧/Process finished with exit code 0

http://chatgpt.dhexx.cn/article/f5fUCOEO.shtml

相关文章

字符串匹配原理及实现(C++版)

字符串匹配原理及实现(C版) 1. 字符串匹配概念2. BF2.1 原理2.2 代码实现 3. KMP3.1 原理3.2 代码实现 4. BM4.1 坏字符4.2 好后缀4.3 代码实现 1. 字符串匹配概念 在查找操作中,我们用到很重要的概念就是字符串匹配,所谓字符串匹…

C++之单字符串匹配问题

有很多算法可以解决单模式匹配问题。而根据在文本中搜索模式串方式的不同,我们可以将单模式匹配算法分为以下几种: 基于前缀搜索方法:在搜索窗口内从前向后(沿着文本的正向)逐个读入文本字符,搜索窗口中文…

字符串——字符串匹配

文章目录 字符串匹配一、基本概念字符串匹配问题符号和术语后缀重叠引理 二、朴素字符串匹配算法三、Rabin-Karp算法(字符串Hash算法)进制Hash质数Hash 四、利用有限自动机进行字符串匹配有限自动机字符串匹配自动机计算状态转移函数代码 五、Knuth-Morris-Pratt算法模式的前缀…

朴素字符串匹配

描述 字符串匹配问题的形式定义: 文本(Text)是一个长度为 n 的字符串:T;模式(Pattern)是一个长度为 m 且 m≤n 的字符串:P; T 和 P 中的元素都属于有限的字母表 Σ 表; 有效位移 (Valid Shift): 如果 0≤ s ≤n-m,并且 T[s1…sm] P[1…m]&#xff0c…

算法之字符串匹配一

目录 前言: BF算法: RK算法 总结: 参考资料 前言: 字符串匹配指的是一个短点的字符串与一个长点的字符串进行匹配,并确认短的字符串是否在长的字符串中存在。匹配算法有很多,本文介绍两种简单、容易…

字符串匹配算法(C语言实现)

目录 文章目录 前言 一、BF算法 二、KMP算法 1.算法介绍 2.算法思路 3.整体代码实现 总结 前言 字符串匹配算法又称模式匹配算法,该算法的目的是为了子串从主串中寻找是否有与其匹配的部分, 其可分为BF暴力检索、RK哈希检索、KMP、BM等等,本…

shell字符串匹配

一、简介 Bash Shell提供了很多字符串和文件处理的命令。如awk、expr、grep、sed等命令,还有文件的排序、合并和分割等一系列的操作命令。grep、sed和awk内容比较多故单独列出,本文只涉及字符串的处理和部分文本处理命令。 二、字符串处理 1、expr命令…

golang字符串匹配算法

简介 字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为模式串)。在 Golang 中,可以使用最常见的字符串匹配算法之一:Knuth-Morris-Pratt(KMP)算法,它的时间复杂度为 O(nm…

【数据结构】字符串匹配(暴力匹配)

原理解析: 字符串匹配方法,创建两个字符串结构,主 串和子串比较。 主串字符 a 和 子串字符 c 不匹配,主串的指针向下移动,移动到上一次开始比较的下一个位置。 子串指向开始的位置。 主串字符 b 和 子串字符 c 不匹配…

字符串匹配算法比较

字符串匹配(string match)是在实际工程中经常会碰到的问题,通常其输入是原字符串(String)和子串(又称模式,Pattern)组成,输出为子串在原字符串中的首次出现的位置。通常精确的字符串搜索算法包括暴力搜索(Brute force)…

子串查找(字符串匹配)

子串查询 首先,我们来定义两个概念,主串和模式串。我们在字符串 A 中查找字符串 B,则 A 就是主串,B 就是模式串。我们把主串的长度记为 n,模式串长度记为 m。由于是在主串中查找模式串,因此,主串…

字符串匹配算法综述

字符串匹配算法综述 字符串匹配算法综述:BF、RK、KMP、BM、Sunday 字符串匹配算法,是在实际工程中经常遇到的问题,也是各大公司笔试面试的常考题目。此算法通常输入为原字符串(string)和子串(pattern&…

字符串匹配算法详解

希望看到文章的你们,能够在今年的研究生考试中超常发挥。 愿你们都能考上自己心仪的学校,为你们的备考生涯划上一个完美的句号。做为你们的师兄有几句话想对你们说,希望这些话能对你们有一些帮助。 马上就要考试了,不要再继续啃难…

字符串匹配算法

字符串匹配就是在主串A中查找模式串B,例如在主串abababc中查找模式串abc是否存在,记主串A的长度为n,模式串B的长度为m,n>m。 BF算法 BF(Brute Force)算法,又叫暴力匹配算法或者朴素匹配算法,思路很简单…

字符串(字符串匹配)

一、字符串匹配问题、基础 1、假设文本是一个长度为n的数组T,而模式是长度为m的数组P,我们希望在文本T中寻找模式P 如果P出现在T中的第s个位置,那么我们称其有效偏移为s,在其他不匹配的位置称为无效偏移 2、如果字符串w是字符串…

字符串匹配

字符串匹配 1.朴素的串匹配算法(暴力解法) 1.1 分析 设t是目标串(母串),p是模式串(待匹配串),i , j 分别指向 模式串 和 目标串,m、n分别是模式串p和目标串t的长度。 从目标串的第0个字符&am…

Photoshop怎么给图片添加简介信息或者版权信息

转自:Photoshop怎么给摄影图片添加作者名字版权等信息? 有时我们点开一张图片的详细信息中可能可以看到各种属性信息,比如作者,时间,关键字,图片信息描述等属性,但是我们自己的拍摄的或者从别的地方获取的…

2022年中国版权保护中心计算机软件著作权登记最全申请步骤流程

一、前言二、实名认证1. 用户注册2. 实名认证 三、办理步骤1. 办理流程2. 填写申请表3. 提交申请文件4. 登记机构受理申请5. 审查6. 获得登记证书 四、登记申请所需文件1. 软件著作权登记申请表2. 软件(程序、文档)的鉴别材料3. 有关证明文件 五、申请表…

IDEA设置版权信息

File→Settings或者CtrlS快捷键。 Editor下面有个Copyright→Copyright Profiles 点击加号,然后输入名称。 然后修改成自己的信息: 其中第一个年份是本文件新建日期,后面的是最后一次修改年份。 中文版本: 版权所有(c) Jack魏 …

版权和版本信息

版权和版本信息的主要内容有: (1)版权信息; (2)文件名称、简要描述、创建日期和作者; (3)当前版本信息和说明; (4)历史版本信息和…