MSRCR

article/2025/9/13 6:04:55
带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理、实现及应用。

    Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex) 两个词组合构成的。Retinex理论主要包含了两个方面的内容:物体的颜色是由物体对长波、 中波和短波光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照 非均匀性的影响,具有一致性 。 

    根据Retinex理论,人眼感知物体的亮度取决于环境的照明和物体表面对照射光的反射,其数学表达式为:

            I(x,y)=L(x,y)*R(x,y)                            (2-1)

  式中: I(x,y)代表被观察或照相机接收到的图像信号;L(x,y)代表环境光的照射分量 ;R(x,y)表示携带图像细节信息的目标物体的反射分量 。

    将(2-1)式两边取对数,则可抛开入射光的性质得到物体的本来面貌,即有关系式 :

       Log[R(x,y)] = Log[I(x,y)]-Log[L(x,y)];                      (2-2)

    对上面的理论的进行一个简单的注释吧。把这个技术运用到图像处理上,就是针对我们现在已经获得的一副图像数据I(x,y),计算出对应的R(x,y),则R(x,y)认为是增强后的图像,现在的关键是如何得到L(X,Y)。Retinex理论的提出者指出这个L(x,y)可以通过对图像数据I(x,y)进行高斯模糊而得到,很多论文中都列出了那个中心/围绕函数以及需要归一化的K值,搞的很多新手都不明白是什么了,其实就是一个模糊而已。从实际运用的角度来说,也可以用均值模糊来代替高斯模糊。

     因此这个算法的细路就很简单了,具体步骤如下:

     1、输入: 原始图像数据I(x,y),尺度(也就是所谓的模糊的半径)

     2、处理:(1) 计算原始图像按指定尺度进行模糊后的图像 L(x,y);

              (2) 按照2-2式的计算方法计算出 Log[R(x,y)]的值。

              (3) 将 Log[R(x,y)]量化为0到255范围的像素值,作为最终的输出。

    可以看得出,算法很简单,其核心的东西还是在于高斯模糊的实现。关于高斯模糊,网上有很多快速优化的文章参考,具体的参考代码可能很少有好人提供的。

    注意到一点,似乎在量化的时候没有谁会将 Log[R(x,y)]进行Exp函数的运算而直接得到R(x,y),至于为什么,我无法给出明确的答案。

    量化的方式其实有很多种,而这个方法在很大的程度上对处理的效果有着决定性的影响。至今我没看到有哪一篇论文对这一块讲的很清楚,也不知道他们的那些结果是如何取得的,一种最简单的方式就是计算出Log[R(x,y)]的最大值Max和最小值Min,然后对每一个值Value,进行线性量化,公式为:

            R(x,y) = ( Value - Min ) / (Max - Min) * (255-0)                           (2-3)

    效果测试:

         

                         原图                                   经过Retinex(尺度为10)增强后的图像              经过Retinex(尺度为300)增强后的图像

        

                       原图                                   经过Retinex(尺度为10)增强后的图像                 经过Retinex(尺度为300)增强后的图像

    论文中说,尺度取值较小时, 能够较好地完成动态范围的压缩,暗区域的细节能得到较好地增强,但输出颜色易失真;取值较大时,色感一致性较好。 我倒是没看出尺度小有什么好处。

    以上算法所实现的过程通常倍称作为SSR(Single Scale Retinex,单尺度视网膜增强);

    为了得到更好的效果,人们又开发出所谓的多尺度视网膜增强算法(MSR, Multi-Scale Retinex),最为经典的就是3尺度的,大、中、小,既能实现图像动态范围的压缩,又能保持色感的一致性较好。同单尺度相比,该算法有在计算Log[R(x,y)]的值时步骤有所不同:

    (1) 需要对原始图像进行每个尺度的高斯模糊,得到模糊后的图像Li(x,y),其中小标i表示尺度数。

     (2)  对每个尺度下进行累加计算  Log[R(x,y)] =  Log[R(x,y)] + Weight(i)* ( Log[Ii(x,y)]-Log[Li(x,y)]);  其中Weight(i)表示每个尺度对应的权重,要求各尺度权重之和必须为1,经典的取值为等权重。

     其他的步骤和单尺度的没有区别。

           

                        原图                                      经过SSR(尺度为300)增强后的图像               经过MSR(最大尺度为300,尺度数为3)增强后的图像

           

                           原图                                      经过SSR(尺度为300)增强后的图像              经过MSR(最大尺度为300,尺度数为3)增强后的图像

    SSR和MSR在最大尺度相同的时候谁好谁坏我还真讲不清。

     在以上的两幅测试图像中,特别是第二幅,我们看到明显的偏色效果,这就是SSR和MSR普遍都存在的问题。给一段比较经典的论文中的原话供大家参考:

      The general effect of retinex processing on images with regional or global gray-world violations is a “graying out” of the image, either globally or in specific regions. This desaturation of color can, in some cases, be severe (see Fig. 4, middle). More rarely, the gray-world violations can simply produce an unexpected color distortion (see Fig. 4,top left).

     为此,研究者又开发出一种称之为带色彩恢复的多尺度视网膜增强算法(MSRCR,Multi-Scale Retinex with Color Restoration) ,具体讨论的过程详见 <A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes>这篇论文,这里要说的是,我认为论文里的方法不起任何作用,并且论文里为了这个又引入了太多的可调参数,增加了算法的复杂性,不利于自动化实现。

    从我目前的了解来看,GIMP的contrast-retinex.c文件里使用的算法很好,效果也很好。他直接从量化的方式上入手,引入了均值和均方差的概念,再加上一个控制图像动态的参数来实现无色偏的调节过程,简要描述如下。

    (1)分别计算出 Log[R(x,y)]中R/G/B各通道数据的均值Mean和均方差Var(注意是均方差)。

    (2)利用类似下述公式计算各通道的Min和Max值。

            Min = Mean - Dynamic * Var;  

            Max = Mean + Dynamic * Var;
    (3)  对Log[R(x,y)]的每一个值Value,进行线性映射: 

           R(x,y) = ( Value - Min ) / (Max - Min) * (255-0) ,同时要注意增加一个溢出判断,即:

           if (R(x,y) > 255)  R(x,y) =255; else if (R(x,y) < 0) R(x,y)=0;

     就是经过这么简单的处理,实践证明可以取得非常好的效果,下面贴出一些处理后的效果。

       

     MSR(最大尺度为300,尺度数为3)增强图像           MSRCR(最大尺度为300,尺度数为3,Dynamic=2)增强图像   MSRCR(最大尺度为300,尺度数为6,Dynamic=2)增强图像

        

      MSR(最大尺度为300,尺度数为3)增强图像          MSRCR(最大尺度为300,尺度数为3,Dynamic=2)增强图像   MSRCR(最大尺度为300,尺度数为6,Dynamic=2)增强图像

         由以上三幅图的效果得出的结论:

        (1)MSRCR效果要比MSR好很多,基本消除了色偏。

        (2)对于MSRCR,尺度数对结果的影像不是特别大,但是随着尺度数的增加,算法耗时会线性增加,因此,一般尺度数取3就较为合适了。

         继续贴图做比较:

        

                MSRCR(Dynamic=1)增强图像                            MSRCR(Dynamic=2)增强图像                              MSRCR(Dynamic=5)增强图像

             

                 MSRCR(Dynamic=1)增强图像                            MSRCR(Dynamic=2)增强图像                          MSRCR(Dynamic=5)增强图像

      由以上三幅图的效果得出的结论:

    (3)Dynamic取值越小,图像的对比度越强。

    (4)一般来说Dynamic取值2-3之间能取得较为明显的增强效果,即能取得很自然过渡效果,又能保持图像的清晰度适度增强。

     关于最大尺度,个人建议取值以大于100为佳。

     retinex算法的效果对于一些正常的图像处理后的效果并不佳,我们可以认为他就是为那些在外界环境不理想的状态下拍摄的图像增强而设计的,特别的,对于航拍的雾天图片,医学上的成像图片等成像条件恶劣的图有很明显的效果,再列出一些照片处理效果。

          

          

          

         

          

          

                    原始图像                                             MSRCR增强的效果                                        NASA的Retinex增强结果

    上述照片均使用最大尺度为300,尺度数为3,Dynamic=2时的效果。

    由以上几组照片,可以看到,Retinex在图像去雾、宇航图、医学图像、老照片等图像的处理上效果很是明显。

    NASA的处理效果要比我这里的MSRCR好一些,这当然无可厚非,人家是什么单位啊。

    关于NASA对Retinex技术的应用,可以参考:http://dragon.larc.nasa.gov/retinex/

    关于去雾效果,我们在来和美图秀秀、可牛影像、光影魔术手等现有的软件做个简单的比较:

        

                      原图                                             MSRCR                                                    美图秀秀 

     

                 可牛影像                                                  光影魔术手

       

                       原图                                                 MSRCR                                                 美图秀秀 

      

                 可牛影像                                                 光影魔术手

    关于谁是谁非,为避免不必要的口舌之争,这里还是交给给位看管去分辨吧。

    同样,提供个编译好的文件给有兴趣研究该算法的朋友看看效果:

    http://files.cnblogs.com/Imageshop/Retinex.zip

 

    

    关于Rentinex,在共享两篇比较经典的英文论文:

    Multi-Scale Retinex for Color Image Enhancement

    A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes

    关于实现代码,提供GIMP的contrast-retinex.c的下载链接(要像完全看懂其中的所有代码的意思很困难,但是要提取其中的算法部分就不那么复杂了)。

    http://files.cnblogs.com/Imageshop/contrast-retinex.rar

 



关于Retinex图像增强算法的一些新学习。

  最近再次看了一下IPOL网站,有一篇最近发表的文章,名字就是Multiscale Retinex,感觉自己对这个已经基本了解了,但还是进去看了看,也有一些收获,于是抽空把他们稍微整理了下,原始文章及其配套代码详见:http://www.ipol.im/pub/art/2014/107/。

      之前在我的 带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理、实现及应用 一文中已经较为详细的描述了Multiscale Retinex的基本原理和应用,这里就不再做过多的说明。为表述方便,还是贴出其基本的计算原理:

    

  上式中,I为原始输入图像,F是滤波函数,一般为高斯函数,N为尺度的数量,W为每个尺度的权重,一般都为1/N, R表示在对数域的图像的输出。

  由于R是对数域的输出,要转换为数字图像,必须将他们量化为[0,255]的数字图像范畴,关于这个量化的算法,有这极为重要的意义,他的好坏直接决定了最终输出的图像的品质。

  目前,结合上述文章中提出的一些过程,有4种方式进行处理:

  第一种,也是最容易想到的就是,直接线性量化,即采用下式进行处理:

       

  这种方式,由于Retinex数据处理后的高动态特性,数据分布很广,会出现严重的两极化现象,一般难以获得满意的结果。

  第二种,就是在经典的MSRCR文章《A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes》中提出的Canonical Gain/Offset 算法。计算公式如下:

             

  其中G和b为经验参数。

  第三种,实在上述文章中提到的Simplest Color Balance(我简写为SCR)方式,这种方式的处理类似于Photoshop中的自动色阶,他把数据按照一定的百分比去除最小和最大的部分,然后中间的部分重新线性量化到0和255之间。

  第四种,就是GIMP的Retinex算法,这个可详见 带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理、实现及应用 一文的描述。

  还有一种方式,就是大家知道HDR的过程吧,他也是将高动态的数据量化到图像的可视范围,因此可以直接将这类算法应用与这个问题上。我也做了实验,效果似乎一般。

  在用第二种或第三种方式处理时,最好还需要有个Color Restoration的过程,因为如果直接对MSR处理的结果进行量化,得到的图像往往整体偏灰度,这是由于原始的彩色值经过log处理后的数据范围就比较小了,这样各通道之间的差异也很小,而之后的线性量化比log曲线要平滑很多,因此整体就丧失了彩色。

  论文中提出了修正方式如下:

          

          

          

 

   其中β=46,α=125为经验参数,但是最终我的分析认为β不可能取这么大,取1试验表明效果还不错。

   对于一些原始图像HUE较为合理的图,如果用经典的MSRCR算法,会导致处理后的图容易偏色,上述论文提出了对图像的Intensity数据进行Retinex处理,然后再把数据根据原始的RGB的比例映射到每个通道,这样就能在保留原始颜色分布的基础上增强图像,文章中称其为MSRCP。

  这个算法的编码论文的附带代码里已经有了很好的例子了,其实真是很简单的工作,需要的朋友自己去参考。

  我自己做了5种算法的比较,分别是:

      MSRCRGIMP    -    Gimp内嵌的Retinex增强算法

      MSRCRStandard  -    按照《A Multiscale Retinex ....  the Human Observation of Scenes》一文写的算法,其中G=30,B=-6,β=1,α=125

      MSRCRSCR      -          使用Color Restoration + Simplest Color Balance算法量化得到的结果

        MSRCPSCR      -          使用Intensity数据 + Simplest Color Balance算法量化得到的结果

      MSRHSV      -    对HSV空间的V分量进行(用的SCR量化)Retinex处理并返回RGB空间后的结果

  他们的效果比较如下:

  

        original                         MSRCRGIMP                                   MSRCRStandard

  

           MSRCRSCR                        MSRCPSCR                        MSRHSV

  

        original                           MSRCRGIMP                                MSRCRStandard

  

       MSRCRSCR                            MSRCPSCR                        MSRHSV

  

        original                           MSRCRGIMP                                MSRCRStandard

  

         MSRCRSCR                            MSRCPSCR                        MSRHSV  

  孰好孰坏给位自己去斟酌吧。

  算法效果测试:http://files.cnblogs.com/Imageshop/Retinex%E7%BB%BC%E5%90%88.rar

  很久没有写博客了,其实也没有江郎才尽的感觉,就是呢没有想写的冲动。现在写也无以前那么认真了,感觉就是像计流水账一样。算了,记账就记账吧。

 

****************************作者: laviewpbt   时间: 2014.6.26    联系QQ:  1664462947  转载请保留本行信息********************

 




http://chatgpt.dhexx.cn/article/eGZoL83u.shtml

相关文章

mser场景文字检测及筛选

发现很多人都用mser,swt等进行场景文字的检测&#xff0c;最近也去实现了一下&#xff0c;虽然swt较新的算法&#xff0c;但实现过程中传统的mser算法反而更稳定&#xff0c;速度也会更快&#xff0c;可能是我还没有完全领会swt的精髓。ps:暂时只做水平及水平倾斜的文字 demo …

mser python篇

之前一直在matlab上用这个函数&#xff0c;现在转移到python上面使用 ———————————————————————————————————— 1、代码 I cv2.cvtColor(I, cv2.COLOR_BGR2GRAY); mser cv2.MSER_create() regions,boxes mser.detectRegions(I) for bo…

MSER — 自然场景文本检测

MSER是最大稳定极值区域&#xff1a;是对一幅灰度图像&#xff08;灰度值为0&#xff5e;255&#xff09;取阈值进行二值化处理&#xff0c;阈值从0到255依次递增。阈值的递增类似于分水岭算法中的水面的上升&#xff0c;随着水面的上升&#xff0c;有一些较矮的丘陵会被淹没&a…

文字检测与识别1-MSER

导语 文字识别在现实场景中的用途非常广泛&#xff0c;现在已经有很多公司将这项技术用于实际中。比如车牌识别&#xff0c;图片转换成文档&#xff0c;拍照搜题&#xff0c;拍照翻译等。这让很多人有了错觉&#xff0c;感觉文字识别的技术已经炉火纯青&#xff0c;可以广泛应…

MSER常见参数

MSER用于文本检测已经成熟了&#xff0c;现简单使用来识别车牌号。 目录 MSER参数最大最小区域固定 MSER参数 默认&#xff1a;int delta 5, int min_area 60, int max_area 14400, double max_variation 0.25, double min_diversity .2 * Full constructor for %MSER d…

MSER算法

最稳定极值区域介绍 如把灰度图看成高低起伏的地形图&#xff0c;其中灰度值看成海平面高度的话&#xff0c;MSER的作用就是在灰度图中找到符合条件的坑洼。条件为坑的最小高度&#xff0c;坑的大小&#xff0c;坑的倾斜程度&#xff0c;坑中如果已有小坑时大坑与小坑的变化率…

【MSER】基于MSER算法的交通标志分割仿真

1.软件版本 MATLAB2021a 2.本算法理论知识 [1]钱坤. 基于MSER和遗传优化SVM的交通标志识别的研究[D]. 大连理工大学. [2]王斌, 常发亮, 刘春生. 基于MSER和SVM的快速交通标志检测[J]. 光电子.激光, 2016. 3.部分源码 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%…

MSER相关总结

最近做项目用到了MSER&#xff0c;特地在这做总结。 以前提到字符检测首先会想到Tesseract&#xff0c;但是tesseact对图像的二值化要求过高&#xff0c;比较适合于白底黑字的字符识别&#xff0c;对于复杂情况就无能为力了&#xff1b; 于是就想到用轮廓检测&#xff0c;这种…

最大稳定极值区域(MSER)检测

Lowe和Bay提出的SIFT和SURF算法高效实现了具有尺度和旋转不变性的特征检测&#xff0c;但这些特征不具有仿射不变性。 区域检测针对各种不同形状的图像区域&#xff0c;通过对区域的旋转和尺寸归一化&#xff0c;可以实现仿射不变性。 MSER&#xff08;Maximally Stable Extr…

MSER最稳定极值区域源码分析

最稳定极值区域介绍 如把灰度图看成高低起伏的地形图&#xff0c;其中灰度值看成海平面高度的话&#xff0c;MSER的作用就是在灰度图中找到符合条件的坑洼。条件为坑的最小高度&#xff0c;坑的大小&#xff0c;坑的倾斜程度&#xff0c;坑中如果已有小坑时大坑与小坑的变化率。…

OpenCVSharp入门教程 特征提取①——MSER区域特征提取Maximally Stable Extremal Regions

文章目录 一、前文二、特征提取流程三、界面布局四、功能实现4.1 打开图片4.2 特征提取—源码4.3 特征提取—参数讲解4.4 特征提取—Detect和DetectRegions 五、运行效果图六、发现并解决问题七、其他问题 一、前文 MSER Maximally Stable Extremal Regions 最大极值稳定区 业…

【OpenCV 例程 300篇】247. 特征检测之最大稳定极值区域(MSER)

『youcans 的 OpenCV 例程300篇 - 总目录』 【youcans 的 OpenCV 例程 300篇】247. 特征检测之最大稳定极值区域&#xff08;MSER&#xff09; 1. 最大稳定极值区域&#xff08;MSER&#xff09; 最大稳定极值区域&#xff08;MSER-Maximally Stable Extremal Regions&#xf…

师傅带徒弟学JavaScript-关东升-专题视频课程

师傅带徒弟学JavaScript—430人已学习 课程介绍 本课程是学习Web前端的基础课程&#xff0c;是学习Web前端框架、JavaWeb开发、Python Web开发、PHP开发和.NET Web开发前置课程。 课程收益 掌握JavaScript 讲师介绍 关东升 更多讲师课程 一个在IT领域摸爬滚打20多年的老程…

师傅带徒弟学:Python Web之Flask框架-关东升-专题视频课程

师傅带徒弟学&#xff1a;Python Web之Flask框架—317人已学习 课程介绍 Python Web是Python语言一个重要的应用方面&#xff0c;Python Web有很多&#xff0c;其中Flask和Django框架是他们的佼佼者。 Flask是一个Python实现的Web开发微框架。 课程收益 掌握Flask框架 讲师…

关东升的iOS实战系列图书 《iOS实战:入门与提高卷(Swift版)》已经上市

&#xfeff;&#xfeff; 承蒙广大读者的厚爱我的 《iOS实战&#xff1a;入门与提高卷&#xff08;Swift版&#xff09;》京东上市了&#xff0c;欢迎广大读者提出宝贵意见。http://item.jd.com/11766718.html 欢迎关注关东升新浪微博tony_关东升。 关注智捷课堂微信公共平台&…

Sharding-JDBC(一)SpringBoot集成

目录 1.背景2.简介3.依赖与配置4.表结构&#xff08;1..3&#xff09;5.测试验证5.1 批量保存5.2 列表查询 6.源码地址 1.背景 随着业务数据量的增加&#xff0c;原来所有的数据都是在一个数据库上&#xff0c;网络IO及文件IO都集中在一个数据库上&#xff0c;因此CPU、内存、…

第一篇【Python】基础-关东升-专题视频课程

第一篇【Python】基础—833人已学习 课程介绍 本书是智捷课堂开发的立体化图书中的一本&#xff0c;所谓“立体化图书”就是图书包含&#xff1a;书籍、视频、课件和服务等内容。 其中第一篇包括8章内容&#xff0c;系统介绍了Python语言的基础知识。内容包括Python语言历史…

shardingsphere-jdbc 整合 springboot

shardingsphere官网地址 https://shardingsphere.apache.org/document/5.2.0/cn/user-manual/shardingsphere-jdbc/spring-boot-starter/rules/sharding/ 当前我们演示的是水平分表 1、基础环境配置以及依赖管理 1.1 创建数据库表结构 CREATE TABLE address_0 (id bigint(…

如果张东升是个程序员

张东升是一家互联网公司的程序员&#xff0c;一直以来都勤勤恳恳老实工作。 可最近一段时间&#xff0c;行业不景气&#xff0c;老板不但下令开启了996的工作模式&#xff0c;更要命的是频频更改需求&#xff0c;弄得大家是敢怒不敢言。 时间一久&#xff0c;很多员工开始消极…

专访关东升:松耦合分层架构设计

关东升,国内知名iOS技术作家,iOS技术顾问,高级培训讲师,移动开发专家。拥有16年软件开发经验、8年培训行业经验。精通iOS、Android和 Windows Phone 7及Html5等移动开发技术。在App Store发布多款游戏和应用软件,擅长移动平台的应用和游戏类项目开发。目前主要从事iOS应用…