到底什么是载波聚合(CA)?

article/2025/10/30 5:03:05

1

   

为什么需要载波聚合?

一般来说,要提升网速或者容量,有下面几个思路:

建更多的基站:这样一来同一个基站下抢资源的人就少了,网速自然就上去了。但缺点是投入太大了,运营商肯定不会做亏本的买卖。

提升频谱效率:从2G到5G,有多少专家潜心钻研,一头青丝变华发,就是为了提升效率,在每赫兹的频谱上传更多的数据!可见这项工作是真的很艰难。

增加频谱带宽:这是提升容量最简单粗暴的办法了,从2G到5G,单个载波的带宽不断增长,从2G的200K,再到3G的5M,4G的20M,在5G时代甚至达到了100M(Sub6G频段)乃至400M(毫米波频段)!

然而,这一切努力在汹汹流量面前还是杯水车薪,这可怎么办?

只能再增加频谱带宽了!4G的做法主要是把2G和3G,乃至Wifi的频段抢过来用,5G的做法主要是扩展新频段,从传统的低频向带宽更大的高频发起冲击。

频谱千方百计搞到了,但载波的带宽却已经由协议定好了,不容再改,这又咋办?

说起来要实现也简单,人多力量大是永恒的真理,一个载波容量不够,我就再加一个一起传数据,不信速度上不去。什么,还不够?那就继续增加载波!

这种技术就叫做:载波聚合

话说LTE的第一个版本因为容量有限,虽然被广泛宣传为4G技术,但实际上达不到国际电联的4G标准,业内也就称之为3.9G。

后来LTE演进到LTE-Advanced时,引入了5载波聚合,把单用户可用的带宽从20MHz扩大到了100MHz,这才坐稳了4G的头把交椅。

后面的5G,自然是继承了4G的衣钵,把载波聚合作为提升容量的利器。

2

   

载波聚合的分类及发展史

话说频谱资源是稀缺的,每个频段就那么一小段,因此载波聚合需要支持多种方式,以两载波聚合为例:

如果两个载波的频段相同,还相互紧挨着,频谱连续,就称作频段内连续的载波聚合。

如果两个载波的频段相同,但频谱不连续,中间隔了一段,就称作频段内不连续的载波聚合。

如果两个载波的频段不同,则称作频段间的载波聚合。

这三种方式包含了所有的情况,可谓任你几路来,都只一路去,再多的载波,也能给拧成一股绳。

参与载波聚合的每一个载波,又都叫做分量载波(Component Carrier,简称CC)。因此,3载波聚合也可称之为3CC。

这些载波在一起工作,需要相互协同,就总得有个主辅载波之分。

所谓主载波,就是承载信令,并管理其他载波的载波,也叫Pcell(Primary cell)。

辅载波也叫Scell(Secondary cell),用来扩展带宽增强速率,可由主载波来决定何时增加和删除。

主辅载波是相对终端来说的,对于不同终端,工作的主辅载波可以不同。并且,参与聚合的多个载波不限于同一个基站,也可以来自相邻的基站。

从4G的LTE-Advanced协议引入载波聚合之后,该技术就如脱缰的野马一样狂奔,从最初的5载波聚合,总带宽100MHz,再到后面的32载波聚合,总带宽可达640MHz!

到了5G时代,虽说可聚合的载波数量仅为16个,但架不住5G的载波带宽大啊。

Sub6G的单载波带宽最大100MHz,16个载波聚合一共就1.6GHz带宽了;毫米波频段更夸张,单载波带宽最大400MHz,16个载波聚合一共就有6.4GHz带宽!

时代的车轮就这样滚滚向前。前浪以为自己已经很牛逼了,但回头一看,后浪简直就是滔天巨浪啊,然后还没反应过来就已经被拍在了沙滩上摩擦。

3

   

5G的载波聚合技术

话说5G的载波聚合,相比4G来说更复杂一些。

首先5G的频段分为两类,FR1和FR2,也就是俗称的6GHz以下的频段(Sub6G),以及高频,也就毫米波(mmWave)。

FR1包含了众多从2G,3G和4G传承下来的频段,有些是FDD的,有些是TDD的。

这样一来,在FR1内部就存在FDD+FDD频段间的载波聚合,FDD+TDD频段间的载波聚合,以及TDD+TDD频段间的载波聚合。

在上述的每个FDD或者TDD的频段内部,还可以由多个带内连续的载波聚合而成。3GPP定义了多种的聚合等级,对应于不同的聚合带宽和连续载波数。

比如上图中的FR1频段内载波聚合等级C,就表示2个带内连续的载波聚合,且总带宽在100MHz到200MHz之间。

不同于FR1,FR2是全新定义毫米波频段,双工方式全部都是TDD。

跟FR1类似,3GPP也为FR2频段定义了带内连续的多种的聚合等级,对应于不同的聚合带宽和连续载波数。

比如上图中的FR2频段内载波聚合等级M,就表示8个带内连续的载波聚合,且总带宽在700MHz到800MHz之间。

有了上述的定义,我们就可以在FR1内部频段内,频段间进行载波聚合,还能和FR2进行聚合,并且载波数量,以及每个载波的带宽也都可以不同,它们之间的排列组合非常多。

举个例子,“CA_n78A-n258M”这个组合,就代表n78(又称3.5GHz或者C-Band)和n258(毫米波26GHz)这两个频段间的聚合,其中n78的频段内聚合等级为A,也就是单载波,n258的频段内聚合等级为M,也就是有8个载波且总带宽小于800MHz。

4

   

NSA组网下的双连接技术

且说上面的5G内部载波聚合已经很强悍了,但这还只是带宽扩展的冰山一角。

5G在NSA架构下引入了双连接(Dual Connection,简称DC)技术,手机可以同时连接到4G基站和5G基站。

在双连接的基础上,4G部分和5G部分还都可以在其内部进行载波聚合,这就相当于把4G的带宽也加进来,可进一步增强下行传输速率!

在双连接下,手机同时接入4G基站和5G基站,这两基站也要分个主辅,一般情况下Option3系列架构中,4G基站作为控制面锚点,称之为主节点(Master Node),5G基站称之为辅节点(Secondary Node)。

主节点和辅节点都可以进行载波聚合。其中主节点的主载波和辅载波称为Pcell和Scell,辅节点的主载波和辅载波称为PScell和Scell。

带载波聚合的主节点和辅节点又可以被称作MCG(Master Cell Group,主小区组)和SCG(Secondary Cell Group,辅小区组)。

虽说NSA架构的初衷并不是提升速率,而是想着藉由4G来做控制面锚点,这样一来不但现网的4G核心网EPC可以利旧,还能使用成熟的4G覆盖来庇护5G这个初生的孩童。

但是客观上来讲,通过双连接技术,手机可同时连接4G和5G这两张网络,获取到的频谱资源更多,理论上的峰值下载速率可能要高于SA组网架构,除非以后把4G载波全部重耕到5G。

这些双连接加载波聚合的组合,也都是由协议定义的。

如果看到这串字符:DC_1A_n78A-n257M,我们先按照下划线“_”把它拆解为三个部分,DC,1A,和n78A-n257M。

DC就表示双连接,1A表示LTE band1(2100MHz)单载波,后面的n78A-n257M见前文的解释,这串字符综合起来就是5G FR1和FR2多个载波聚合后,在和一个4G载波进行了双连接。

5

   

高通骁龙888集成的X60基带,下载速率是怎样达到7.5Gbps的?

话说近期高通发布了骁龙888芯片,这个名字确实非常吉利,其内部集成的X60基带也是非常牛逼的,号称能达到7.5Gbps的最大下载速度。

我们且先看看X60主要都支持哪些高级能力:

频段支持:Sub6G(FR1)和mmWave(FR2)都支持,在Sub6G还支持4G和5G的动态频谱共享(Dynamic Spectrum Sharing,简称DSS)。

Sub6G能力:支持200M带宽,4x4 MIMO。也就是说,可以在这200M带宽(2个100M载波)上,同时接收4路不同的下载数据,也叫做4流。

mmWave能力:支持800M带宽,8个载波,2x2 MIMO。也就是说,这800M带宽被划分为了8个载波,每个100M,它们可聚合起来,同时接收2路不同的下载数据,也叫做2流。

载波聚合能力:Sub6G载波聚合(FDD+TDD,FDD+FDD,TDD+TDD),以及Sub6G和mmWave之间的载波聚合。

那么,7.5Gbps的下载速率是怎么实现的呢?

由于没有详细资料,蜉蝣君大概通过各种组合的拼凑,大概猜测了一下,这个速率可能是在NSA模式下,由一个5G Sub6G 100M载波加上7个mmWave 100M载波聚合起来, 再和4G的一个20MHz载波做了双连接而得来的。

当然,这只是芯片的上限能力,具体能把这些潜能发挥到多少,还要看手机厂家的具体实现。让我们拭目以待。

好了,本期的内容就到这里,希望对大家有所帮助。

本文转载自“无线深海”,作者蜉蝣采采。


http://chatgpt.dhexx.cn/article/dKhWhmSK.shtml

相关文章

ntpdate同步时间出现:no server suitable for synchronization found 最终解决方案!

搭建zabbix服务器时,用ntpdate同步时间出错 ntpdate[2685]: no server suitable for synchronization found 百度查阅资料,尝试了以下数种方法: 换别的时间服务器 ping 域名得到IP,在linux和windows上都ping,根据得到…

内网安装ntpdate时间同步工具

查询是否安装NTP服务 # rpm -qa | grep ntp 根据系统版本寻找合适的RPM安装包。 RPM下载网站:​​https://pkgs.org/download/ntp​​(几乎涵盖了所有RPM包) 下载安装ntpdate wget http://mirror.centos.org/centos/7/os/x86_64/Packages/ntpdate-4.2.6p5-29.el7.ce…

CentOS服务器ntpdate同步及使用ntpdate同步时钟服务器时间

一、centos服务器ntpdate同步 如有多台CentOS服务器运行相同的服务,且对时间准确性要求较高,那必须保证多台服务器时间统一。 最简单的就是每台服务器都用ntpdate同步同一台网络时间服务器的时间。 1、输入ntpdate time.nist.gov同步网络时间 [rootl…

工业协议:DNP协议

一、 数据链路层规约 数据链路层规约文件规定了DNP3.0版的数据链路层,链路规约数据单元(LPDU)以及数据链路服务和传输规程。数据采用一种可变帧长格式:FT3。 FT3 帧长格式: 一个FT3帧被定义为一个固定长度的报头,随后是可以选用…

ICMPv6与NDP

1 ICMPv6 1.1 报文格式 ICMPv6协议号为58,即next header值为58,除了IPv4的作用外,还增加了邻居发现、无状态自动配置、PMTU等功能,报文格式如下: 0 7 15 31 Type Code Checksum Message Body…

ndpi工作流程

这里以ndpi的例程ndpiReader.c为例,讲述一下ndpi从抓包到最终分析出具体协议的流程。简单来讲ndpi是从下层开始逐层向上对数据包进行分析的。 先上一发自己画的流程图 这张图是我在最开始看ndpi源码的时候做的流程图,还不是非常的清楚和正确&#xff0…

【随笔记】linux usb gadget ncm wrong ndp sign 问题修复

一、模拟网卡简介 在 Linux 通过 usb 模拟网卡时,有四种方式: 1. 使用 usb gadget rndis 2. 使用 usb gadget ecm 3. 使用 usb gadget ncm 4. 使用 usb gadget eem rndis:是微软公司制定的协议规范, 不过似乎规范不完整, 引起 rndis host …

nDPI分析

nDPI分析 一.概述 nDPI是保持高度欢迎的OpenDPI,在GPL证书下发布,它的目标是增加新的协议,扩展原有的库;为了支持多平台的体验,它除了支持UNIX系列外,还支持windows版本;而且,可以…

如何实现在on ethernetPacket中自动回复NDP response消息

对于IPv4协议来说,如果主机想通过目标ipv4地址发送以太网数据帧给目的主机,需要在数据链路层填充目的mac地址。根据目标ipv4地址查找目标mac地址,这是ARP协议的工作原理 对于IPv6协议来说,根据目标ipv6地址查找目标mac地址,它使用的不是ARP协议,而是邻居发现NDP(Neighb…

IPv6 NDP邻居发现协议 1

NDP(Neighbor Discovery Protocol,邻居发现协议)是IPv6的一个关键协议,它组合了IPv4中的ARP、ICMP路由器发现和ICMP重定向等协议,并对它们作了改进。作为IPv6的基础性协议,NDP还提供了前缀发现、邻居不可达…

NPDP是什么?

NPDP由美国产品开发与管理协会(PDMA)发起,是国际公认的唯一的新产品开发专业认证,集理论、方法与实践为一体的全方位知识体系。 一,为什么要考NPDP认证? 1.对于个人: 1)确保精通新…

802.11 NDP Sounding

NDP Sounding 1.NDP原理2.NDP 过程3.帧结构3.1 NDPA结构3.2 CBF帧 1.NDP原理 802.11n标准提供的波束成形技术,可以通过预先补偿发射天线的相位,让两条波束进行叠加以实现最好的效果 显式波束成形需要终端反馈信道信息: AP向STA发送探测数据…

【IPv6】IPv6 NDP邻居状态详解

NDP 邻居状态 任意两个通信的主机在通信之前,先要建立邻居。(省的去查找arp了) 因为接下来的文字会很乱,排版费劲,所以用这个来。 未完成(Incomplete),可达(Reachable),陈旧(Stale),延迟(Delay),探查(Probe) 正常过程…

ICMPV6协议及NDP协议

一、ICMPV6 1、基于ipv6的ICMPv6(Internet control message protocol for IPv6)是 IPv6 下的 Internet 控制报文协议;在 IPv6 中,ICMPv6 整合实现了 IPv4 中的 ICMP(ping命令)、ARP 以及 IGMP 的所有功能&a…

IPV6 邻居发现协议(NDP)

IPV6除了显著增加了地址空间外,另一个最显著的特征就是它的即插即用性。 邻居发现协议(Neighbor Discovery Protocol,NDP)就是使用以下的功能实现即插即用特性的协议: 路由器发现:当一个节点连接到一个IPV6的链路时,它…

802.11 - NDP反馈报告

目录 概述 帧格式 能力指示 NFRP Trigger帧格式 Common Info字段 HE TB feedback NDP帧格式 NDP Feedback Report Parameter Set element格式 NDP反馈报告流程 概述 STA行为 NDP反馈报告的TXVECTOR参数 STA处理流程 NDP反馈报告流程中的Power save操作 概述 NDP反…

ipv6的NDP协议有哪些功能,是如何进行工作的

ipv6的NDP协议有哪些功能 NDP(neighbor Discovery protocol)是ICMPv6的子协议是IPV6协议体系中一个重要的基础协议,邻居发现协议替代了IPV4的ARP,ICMP路由器发现。它定义了使用ICMPv6报文实现地址解析,跟踪邻居状态&a…

IPV6邻居发现协议(NDP)

概述 NDP(Neighbor Discovery Protocol,邻居发现协议)是IPv6的一个关键协议,它组合了IPv4中的ARP、ICMP路由器发现和ICMP重定向等协议,并对它们作了改进。作为IPv6的基础性协议,NDP还提供了前缀发现、邻居不…

11.NDP协议分析与实践

NDP 协议分析与实践 1. 概述 1.1 简介 Neighbor Discovery Protocol 基于 ICMPv6 实现,用于替代 IPv4 中的 ARP 和 ICMP 路由器发现基于 ICMPv6 实现节点发现(主机和路由)、重复地址检测、地址解析、邻居不可达检测和重定向等功能 1.2 NDP 报文格式 1.2.1 路由…

IPv6邻居发现协议--NDP详解

一、ICMPv6 -Internet控制报文协议 ICMPv6是IPV6的基础协议之一,用于向源节点传递报文转发的信息或错误 协议类型号(即:IPv6Next Header)为58 icmpv6可以提供icmpv4的的对应功能之外,还有其他一些功能的基础如邻居发…