1、请问MATLAB中神经网络预测结果应该怎么看?求大神解答
从图中Neural
Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。经过482次迭代循环完成训练,耗时5秒。相同计算精度的话,训练次数越少,耗时越短,网络结构越优秀。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。
谷歌人工智能写作项目:小发猫
2、BP神经网络预测模型在matlab下编程如何显示出它的预测值
%画出预测输出结果和期望输出结果图
figure;
plot(output_fore,':og');
hold on;
plot(output2_lianghua','-*');
legend('预测输出','期望输出');
title('BP网络预测输出','fontsize',12);
ylabel('函数输出','fontsize',12);
xlabel('样本','fontsize',12);
%画出预测结果误差图
figure
plot(error,'-*')
title('BP网络预测误差','fontsize',12)
ylabel('误差','fontsize',12)
xlabel('样本','fontsize',12)
3、用matlabBP神经网络做多元线性回归,求问各参数的拟合值怎么看?
这个要看你选择的激活函数,若是你的激活函数为非线性函数,那就不可能得到各参数的拟合值。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。得到表达式后就可以得到相应参数的拟合值了
4、如何利用matlab进行神经网络预测
matlab 带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子。
核心调用语句如下:
%数据输入
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,[8 8]);
net.trainParam.epochs=100;
net.trainParam.lr=0.01;
net.trainParam.goal=0.01;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);
%% 结果分析
5、matlab7.0做BP神经网络预测,精度怎么看?
应该是点performance那个按钮,显示一个误差下降曲线图。
事实上,不需过分关注这条曲线,除非是研究改进算法提高收敛速度的。一般关注网络的实际训练效果,以及实际应用能力,如预测能力等。
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
6、matlab怎么利用神经网络做预测
利用matlab做神经网络预测,可按下列步骤进行:
1、提供原始数据
2、训练数据预测数据提取及归一化
3、BP网络训练
4、BP网络预测
5、结果分析
7、如何查看matlab神经网络权值矩阵
这个很简单啊,比如说是rbf网络,查看网络权值矩阵方法是:
应该是运行完后,在命令窗口输入
net.b{1}
net.iw{1,1}
net.b{2}
net.lw{2,1}
你可以在命令窗口输入type
newrbe,查看该函数里面的一些参数,把你需要的输出即可