注意力模型直观理解(Attention Model Intuition)

article/2025/10/29 15:31:17

来源:Coursera吴恩达深度学习课程

本周的课程我们都在使用这个编码解码的构架(a Encoder-Decoder architecture)来完成机器翻译。当你使用RNN读一个句子,于是另一个会输出一个句子。注意力模型(the Attention Model)会使它工作得更好。注意力这种思想(the attention idea)已经是深度学习中最重要的思想之一,我们看看它是怎么运作的

假设有一个很长的法语句子,绿色的编码器读取并记忆整个句子,然后在感知机中传递(to read in the whole sentence and then memorize the whole sentences and store it in the activations conveyed here)。这个紫色的解码网络(the decoder network)将生成英文翻译。但是,人工翻译并不会读整个法语句子,再记忆里面的东西,然后从零开始,机械式地翻译成一个英语句子。人工翻译可能是看一部分,翻译一部分,一直这样下去。因为记忆整个的像这样的的句子是非常困难的。

看这个Bleu score-Sentence length曲线图,我们看到这个编码解码结构对于短句子效果非常好,于是它会有一个相对高的Bleu分(Bleu score),但是对于长句子而言,比如说大于30或者40词的句子,它的表现就会变差(蓝色曲线)。整体来看,很短的句子很难得到所有词会难以翻译;对于长句子,效果也不好,因为在神经网络中,记忆非常长句子是非常困难的。在之后的学习中,会学习注意力模型,它翻译得很像人类。有了注意力模型,机器翻译系统的表现会像绿色曲线,因为翻译只会翻译句子的一部分,不会有一个巨大的下倾(huge dip),这个下倾实际上衡量了神经网络记忆一个长句子的能力,这是我们不希望神经网络去做的事情。

注意力模型源于Dimitri, Bahdanau, Camcrun Cho, Yoshe Bengio。(Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[J]. Computer Science, 2014.)虽然这个模型源于机器翻译,但它也推广到其他应用领域。Andrew认为在深度学习领域,这个是个非常有影响力和开创性的论文。

看这个法语:Jane visite l'Afrique en Septembre(1)假定我们使用一个双向的RNN(a bidirectional RNN),为了计算每个输入单词的的特征集(set of features),我们必须要理解输出y-帽^<1>一直到y-帽^<5>的双向RNN。但是我们并不是只翻译一个单词,让我们先去掉上面的Y,然后对于句子里的每五个单词,计算一个句子中单词的特征集,也有可能是周围的词生成英文翻译。我们将使用另一个RNN生成英文翻译。用记号S来表示RNN的隐藏状态(the hidden state in this RNN),记为S^<1>。我们希望第一个生成的单词将会是Jane,那么我们应该看输入的法语句子的哪个部分?似乎你应该先看第一个单词或者它附近的词,但是别看太远了,比如句尾。

注意力模型就会计算注意力权重(a set of attention weights)。用α^<1,1>来表示生成第一个词时应该放多少注意力在这个第一块信息处。α^<1,2>表示计算第一个词Jane时,我们应该花多少注意力在输入的第二个词上面。α^<1,3>同理。注意力权重将评估应该花多少注意力在记号为C的内容上。这就是RNN的一个单元,如何尝试生成第一个词的,这是RNN的其中一步(蓝色标记)(2)对于RNN的第二步(紫色标记),我们将有一个新的隐藏状态S^<2>,使用一个新的注意力权值集(a new set of the attention weights),α^<2,1>表示在生成第二个词时应该花多少注意力在输入的第一个法语词jane上, visits就会是第二个标签了(the ground trip label)。α^<2,2>也同理,花多少注意力在visite词上。当然我们第一个生成的词Jane也会输入到这里,于是我们就有了需要花注意力的上下文,然后会一起生成第二个词,(3)第三步S^<3>(绿色标记),visits也是输入,我们再有上下文C,它取决于不同的时间集(time sets),其他分析过程类似。

如上图橘色标记,直观来想就是RNN向前进一次生成一个词,直到最终生成可能是。注意力权重α^<t,t>表示当你尝试生成第t个英文词,应该花多少注意力在第t个法语词上面。当生成一个特定的英文词时,这允许它在每个时间步去看周围词距内的法语词要花多少注意力。

以上就是关于注意力模型的一些直观的东西。

说明:记录学习笔记,如果错误欢迎指正!转载请联系我。


http://chatgpt.dhexx.cn/article/YCmPQsxZ.shtml

相关文章

深度学习中的注意力机制

作者 | 张俊林 责编 | 何永灿 最近两年&#xff0c;注意力模型&#xff08;Attention Model&#xff09;被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中&#xff0c;是深度学习技术中最值得关注与深入了解的核心技术之一。 本文以机器翻译为例&…

注意力模型---Attention Model

注意力模型---Attention Model 1、Soft Attention Mode1.1 什么是Soft Attention Mode1.1 公式介绍 2、四种注意力中的打分函数2.1 加性注意力&#xff08;additive attention&#xff09;2.2 点积注意力&#xff08;multiplicative attention&#xff09;与双线性注意力(MLB)2…

【机器学习】关于注意力模型(Attention-model)的理解和应用

注意力模型是近年来在序列处理领域新提出的机器学习方法&#xff0c;在语言翻译等领域取得了不错的效果。要想了解注意力模型&#xff0c;那么必须对现在的机器学习各领域有一定的了解&#xff0c;而且要了解encoder-decoder基本思想。 首先可以大致的概括下目前的机器学习尤其…

一文读懂计算机视觉中的注意力机制原理及其模型发展

作者&编辑 | 言有三 来源 | AI有道&#xff08;ID:yanyousan_ai&#xff09; 导读&#xff1a;Attention机制在近几年来在图像&#xff0c;自然语言处理等领域中都取得了重要的突破&#xff0c;被证明有益于提高模型的性能。Attention机制本身也是符合人脑和人眼的感知机制…

注意力模型(Attention Model)理解和实现

1. 直观感受和理解注意力模型 在我们视野中的物体只有少部分被我们关注到&#xff0c;在某一时刻我们眼睛的焦点只聚焦在某些物体上面&#xff0c;而不是视野中的全部物体&#xff0c;这是我们大脑的一个重要功能&#xff0c;能够使得我们有效过滤掉眼睛所获取的大量无用的视觉…

注意力模型(Attention Model)

八月的第一天&#xff0c;苏神yyds&#xff01; 来源&#xff1a;Coursera吴恩达深度学习课程 在注意力模型直观理解中我们看到注意力模型如何让一个神经网络只注意到一部分的输入句子。当它在生成句子的时候&#xff0c;更像人类翻译。让我们把这些想法转化成确切的式子&…

VOC 数据集格式的生成

VOC 数据集格式的生成 准备好以下文件 images里放置图片 labels里面放置标签 注&#xff1a;前面两行必须是 ignore 和 background labelme2voc.py 里放入以下代码 #!/usr/bin/env pythonfrom __future__ import print_functionimport argparse import glob import os impo…

voc数据集对有标签的数据集数据增强

voc数据集对有标签的数据集数据增强 安装依赖库和imgaug库Bounding Boxes实现读取原影像bounding boxes坐标生成变换序列bounding box 变化后坐标计算 使用示例数据准备设置文件路径设置增强次数设置增强参数修改xml文件中filename和path输出 完整代码 安装依赖库和imgaug库 在…

目标检测:PASCAL VOC 数据集简介

一、简介 PASCAL VOC 挑战赛主要有 Object Classification 、Object Detection、Object Segmentation、Human Layout、Action Classification 这几类子任务 PASCAL 主页 与 排行榜PASCAL VOC 2007 挑战赛主页 、PASCAL VOC 2012 挑战赛主页 、PASCAL VOC Evaluation Server PA…

VOC数据集介绍以及读取(目标检测object detection)

VOC&#xff08;Visual Object Classes&#xff09;数据集是一个广泛使用的计算机视觉数据集&#xff0c;主要用于目标检测、图像分割和图像分类等任务。VOC数据集最初由英国牛津大学的计算机视觉小组创建&#xff0c;并在PASCAL VOC挑战赛中使用。 VOC数据集包含各种不同类别…

Pascal VOC 数据集介绍

介绍Pascal VOC数据集&#xff1a; Challenge and tasks&#xff0c; 只介绍Detection与Segmentation相关内容。数据格式衡量方式voc2007, voc2012 Challenge and tasks 给定自然图片&#xff0c; 从中识别出特定物体。 待识别的物体有20类&#xff1a; personbird, cat, c…

VOC和COCO数据集

一.Pascal VOC&#xff08;Pascal Visual Object Classes&#xff09; Pascal VOC网址&#xff1a;http://host.robots.ox.ac.uk/pascal/VOC/ 查看各位大牛算法的排名的Leaderboards&#xff1a;http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php 训练/验证数…

VOC数据集

VOC数据集 VOC数据集 tar格式VOC数据集的下载&#xff08;使用迅雷加快下载速度&#xff09;VOC 2007Annotations&#xff1a;包含了xml文件&#xff0c;描述了图片的各种信息&#xff0c;特别是目标的位置坐标ImageSets&#xff1a;主要关注Main文件夹的内容&#xff0c;里面的…

深度学习 — VOC数据集 处理工具类

文章目录 深度学习 — VOC 数据集 & 处理工具类一、数据集简介二、数据集内容1. Annotations1) VOC 数据集类别统计2) VOC 标注文件解析 2. ImageSets1) VOC数据集划分 3. JPEGImages4. SegmentationClass5. SegmentationObject 三 VOC 数据集工具类四、参考资料 转载请注明…

讲解目标检测数据集--------VOC数据集和COCO数据集的使用

仅供学习参考&#xff0c;如有不足&#xff0c;敬请指正 一&#xff1a;VOC数据集 VOC官方网站&#xff1a; http://host.robots.ox.ac.uk/pascal/VOC/ 一般情况下&#xff0c;大家使用2007和2012比较多 voc2007数据集地址&#xff1a; http://host.robots.ox.ac.uk/pasc…

VOC数据集解析 VOC2007解析

VOC数据是 PASCAL VOC Challenge 用到的数据集&#xff0c;官网&#xff1a;http://host.robots.ox.ac.uk/pascal/VOC/ 备注&#xff1a;VOC数据集常用的均值为&#xff1a;mean_RGB(122.67891434, 116.66876762, 104.00698793) pytorch上通用的数据集的归一化指标为&#x…

VOC2007数据集

官方下载地址&#xff1a; https://pjreddie.com/projects/pascal-voc-dataset-mirror/ 下面以voc2017为例 下载训练和验证集&#xff1a; http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar 下载测试集&#xff1a; http://host.robots.ox.ac.uk…

voc数据集格式详解

计算机视觉经常会用到voc数据集 以如下数据集为例 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz Annotations 包含着xml文件&#xff0c;就是利用roLabelImg进行标注 JPEGImages 里面就是原始的图片 train.txt和va…

PASCAL VOC数据集分析

PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集&#xff0c;从2005年到2012年每年都会举行一场图像识别challenge。 本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。 在这里采用PASCAL VOC2012作为例子。下载地址为&#xff…

VOC数据集详解

VOC数据集可以用于目标检测、目标分割。 该文件夹下有三个子文件。分别为&#xff1a;ImageSets,JPEGImages,SegmentationClass JPEGImages该文件夹下一般放置原图&#xff1b; SegmentationClass存放标签文件&#xff1b; 该分割结果图是一个灰度图&#xff0c;例如属于飞机部…