预训练语言模型论文分类整理

article/2025/8/30 12:47:07

© 作者|王晓磊  

机构|中国人民大学高瓴人工智能学院博士生  

导师|赵鑫教授  

 研究方向 | 对话系统  

1. 引言

近年来,以 BERT 和 GPT 系列为代表的大规模预训练语言模型(Pre-trained Language Model, PLM)在 NLP 的各个领域取得了巨大成功。本文整理了自 BERT 和 GPT 诞生以来与 PLM 相关的论文,根据引用数筛选出163篇具有代表性的工作,并按照综述基准数据集PLM的设计PLM的分析高效的PLMPLM的使用六大类型进行了初步划分。

本文整理的论文列表已经同步更新到 GitHub,也会进行持续的更新,欢迎大家关注和 Star。

https://github.com/RUCAIBox/PLMPapers

本文尽可能地在每篇论文的后面附上了 PDF 链接、代码实现和项目主页,以方便读者进一步了解相关工作。

2. 综述

  1. "Pre-trained models for natural language processing: A survey". Science China Technological Sciences(2020)

  2. "Which *BERT? A Survey Organizing Contextualized Encoders". EMNLP(2020)

  3. "A Primer in BERTology: What We Know About How BERT Works". TACL(2020) 

  4. "From static to dynamic word representations: a survey". International Journal of Machine Learning and Cybernetics(2020) 

  5. "Overview of the Transformer-based Models for NLP Tasks". 2020 15th Conference on Computer Science and Information Systems (FedCSIS) 

  6. "A Survey on Contextual Embeddings". arXiv(2020) 

  7. "The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures". IEEE Access(2021) 

  8. "Pre-Trained Models: Past, Present and Future". arXiv(2021) 

  9. "A Survey of Transformers". arXiv(2021) 

3. 基准数据集

  1. XNLI: "XNLI: Evaluating Cross-lingual Sentence Representations". EMNLP(2018) 

  2. GLUE: "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding". ICLR(2019)

  3. SuperGLUE: "SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems". NeurIPS(2019) 

  4. CLUE: "CLUE: A Chinese Language Understanding Evaluation Benchmark". COLING(2020) 

  5. XTREME: "XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization". ICML(2020) 

  6. XGLUE: "XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation". EMNLP(2020) 

  7. DialoGLUE: "DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented Dialogue". arXiv(2020) 

 4. PLM的设计

 4.1 通用设计

  1. GPT: "Improving Language Understanding by Generative Pre-Training". OpenAI(2018) 

  2. GPT-2: "Language Models are Unsupervised Multitask Learners". OpenAI(2019) 

  3. BERT: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". NAACL(2019) 

  4. XLNet: "XLNet: Generalized Autoregressive Pretraining for Language Understanding". NeurIPS(2019) 

  5. SBERT: "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks". ACL(2019) 

  6. UniLM: "Unified Language Model Pre-training for Natural Language Understanding and Generation". NeurIPS(2019) 

  7. MASS: "MASS: Masked Sequence to Sequence Pre-training for Language Generation". ICML(2019) 

  8. Chinese-BERT-wwm: "Pre-Training with Whole Word Masking for Chinese BERT". arXiv(2019) 

  9. "Cloze-driven Pretraining of Self-attention Networks". EMNLP(2019) 

  10. "BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model". Workshop on Methods for Optimizing and Evaluating Neural Language Generation(2019) 

  11. GPT-3: "Language Models are Few-Shot Learners". arXiv(2020) 

  12. T5: "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer". JMLR(2020) 

  13. BART: "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension". ACL(2020) 

  14. Poly-encoders: "Poly-encoders: Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring". ICLR(2020) 

  15. SpanBERT: "SpanBERT: Improving Pre-training by Representing and Predicting Spans". TACL(2020) 

  16. ERNIE 2.0: "ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding". AAAI(2020) 

  17. SemBERT: "Semantics-Aware BERT for Language Understanding". AAAI(2020) 

  18. "Leveraging Pre-trained Checkpoints for Sequence Generation Tasks". TACL(2020) 

  19. ProphetNet: "ProphetNet: Predicting Future N-gram for Sequence-to-SequencePre-training". EMNLP(2020) 

  20. UniLMv2: "UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training". ICML(2020) 

  21. MacBERT: "Revisiting Pre-Trained Models for Chinese Natural Language Processing". EMNLP(2020) 

  22. MPNet: "MPNet: Masked and Permuted Pre-training for Language Understanding". arXiv(2020) 

  23. DEBERTA: "DeBERTa: Decoding-enhanced BERT with Disentangled Attention". ICLR(2021) 

  24. PALM: "PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation". EMNLP(2020) 

4.2 知识增强

  1. ERNIE(Baidu): "ERNIE: Enhanced Representation through Knowledge Integration". arXiv(2019) 

  2. KnowBert: "Knowledge Enhanced Contextual Word Representations". EMNLP(2019) 

  3. ERNIE(Tsinghua): "ERNIE: Enhanced Language Representation with Informative Entities". ACL(2019) 

  4. COMET: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction". ACL(2019) 

  5. K-BERT: "K-BERT: Enabling Language Representation with Knowledge Graph". AAAI(2020) 

  6. WKLM: "Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model". ICLR(2020) 

  7. LUKE: "LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention". EMNLP(2020) 

  8. K-Adapter: "K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters". ICLR(2021) 

  9. KEPLER: "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation". TACL(2021) 

4.3 多语言

  1. XLM: "Cross-lingual Language Model Pretraining". arXiv(2019) 

  2. "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond". TACL(2019) 

  3. UDify: "75 Languages, 1 Model: Parsing Universal Dependencies Universally". EMNLP(2019) 

  4. Unicoder: "Unicoder: A Universal Language Encoder by Pre-training with Multiple Cross-lingual Tasks". EMNLP(2019) 

  5. XLM-R: "Unsupervised Cross-lingual Representation Learning at Scale". ACL(2020) 

  6. "Multilingual Alignment of Contextual Word Representations". ICLR(2020) 

  7. mBART: "Multilingual Denoising Pre-training for Neural Machine Translation". TACL(2020) 

  8. mT5: "mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer". NAACL(2021) 

  9. InfoXLM: "InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training". NAACL(2021) 

4.4 多模态

  1. ViLBERT: "ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks". NeuralIPS(2019) 

  2. LXMERT: "LXMERT: Learning Cross-Modality Encoder Representations from Transformers". EMNLP(2019) 

  3. VideoBERT: "VideoBERT: A Joint Model for Video and Language Representation Learning" ICCV(2019) 

  4. MulT: "Multimodal Transformer for Unaligned Multimodal Language Sequences". ACL(2019) 

  5. VisualBERT: "VisualBERT: A Simple and Performant Baseline for Vision and Language". arXiv(2019) 

  6. B2T2: "Fusion of Detected Objects in Text for Visual Question Answering". EMNLP(2019) 

  7. VL-BERT: "VL-BERT: Pre-training of Generic Visual-Linguistic Representations". ICLR(2020) 

  8. Unicoder-VL: "Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training". AAAI(2020) 

  9. VLP: "Unified Vision-Language Pre-Training for Image Captioning and VQA". AAAI(2020) 

  10. UNITER: "UNITER: UNiversal Image-TExt Representation Learning". ECCV(2020) 

  11. Oscar: "Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks". ECCV(2020) 

  12. "12-in-1: Multi-Task Vision and Language Representation Learning". CVPR(2020) 

  13. ActBERT: "ActBERT: Learning Global-Local Video-Text Representations". CVPR(2020) 

  14. VLN: "Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks". CVPR(2020) 

  15. VILLA: "Large-Scale Adversarial Training for Vision-and-Language Representation Learning". arXiv(2020) 

  16. ImageBERT: "ImageBERT: Cross-modal Pre-training with Large-scale Weak-supervised Image-Text Data". arXiv(2020) 

  17. ALIGN: "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision". ICML(2021) 

  18. ClipBERT: "Less Is More: ClipBERT for Video-and-Language Learning via Sparse Sampling". CVPR(2021) 

  19. DALL·E: "Zero-Shot Text-to-Image Generation". arXiv(2021) 

  20. CLIP: "Learning Transferable Visual Models From Natural Language Supervision". arXiv(2021) 

4.5 信息检索

  1. ORQA: "Latent Retrieval for Weakly Supervised Open Domain Question Answering". ACL(2019) 

  2. REALM: "REALM: Retrieval-Augmented Language Model Pre-Training". arXiv(2020) 

  3. RAG: "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". NeurIPS(2020) 

  4. DPR: "Dense Passage Retrieval for Open-Domain Question Answering". EMNLP(2020) 

 5. PLM的分析

 5.1 知识

  1. "What Does BERT Look at? An Analysis of BERT’s Attention". BlackBoxNLP(2019) 

  2. "BERT Rediscovers the Classical NLP Pipeline". ACL(2019) 

  3. "How Multilingual is Multilingual BERT?". ACL(2019) 

  4. "A Structural Probe for Finding Syntax in Word Representations". NAACL(2019) 

  5. "Language Models as Knowledge Bases?". EMNLP(2019) 

  6. "What Does BERT Learn about the Structure of Language?". ACL(2019) 

  7. "Linguistic Knowledge and Transferability of Contextual Representations". NAACL(2019) 

  8. "Assessing BERT's Syntactic Abilities". arXiv(2019) 

  9. "Probing Neural Network Comprehension of Natural Language Arguments" ACL(2019) 

  10. "How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings". EMNLP(2019) 

  11. "Visualizing and Measuring the Geometry of BERT". NeurIPS(2019) 

  12. "Designing and Interpreting Probes with Control Tasks". EMNLP(2019) 

  13. "Open Sesame: Getting inside BERT’s Linguistic Knowledge". BlackboxNLP(2019) 

  14. "What do you learn from context? Probing for sentence structure in contextualized word representations". ICLR(2019) 

  15. "Commonsense Knowledge Mining from Pretrained Models". EMNLP(2019) 

  16. "Do NLP Models Know Numbers? Probing Numeracy in Embeddings". EMNLP(2019) 

  17. "On the Cross-lingual Transferability of Monolingual Representations". ACL(2020) 

  18. "Cross-Lingual Ability of Multilingual BERT: An Empirical Study". ICLR(2020) 

  19. "What BERT Is Not: Lessons from a New Suite of Psycholinguistic Diagnostics for Language Models". TACL(2020) 

  20. "How Much Knowledge Can You Pack Into the Parameters of a Language Model?". EMNLP(2020) 

  21. "How Can We Know What Language Models Know?". TACL(2020) 

  22. "oLMpics-On What Language Model Pre-training Captures". TACL(2020)

  23. "Information-Theoretic Probing with Minimum Description Length". EMNLP(2020) 

  24. "Inducing Relational Knowledge from BERT". AAAI(2020) 

  25. AutoPrompt: "AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts". EMNLP(2020) 

  26. "Emergent linguistic structure in artificial neural networks trained by self-supervision". PNAS(2020) 

  27. "Evaluating Commonsense in Pre-Trained Language Models". AAAI(2020) 

  28. "Inducing Relational Knowledge from BERT". AAAI(2020) 

 5.2 鲁棒性

  1. "Universal Adversarial Triggers for Attacking and Analyzing NLP". EMNLP(2019) 

  2. "Pretrained Transformers Improve Out-of-Distribution Robustness". ACL(2020) 

  3. BERT-ATTACK: "BERT-ATTACK: Adversarial Attack Against BERT Using BERT". EMNLP(2020) 

  4. "Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment". AAAI(2020) 

5.3 稀疏性

  1. "Are Sixteen Heads Really Better than One?". NeurIPS(2019) 

  2. "Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned". ACL(2019) 

  3. "Revealing the Dark Secrets of BERT". EMNLP(2019) 

  4. "The Lottery Ticket Hypothesis for Pre-trained BERT Networks". NeurIPS(2020) 

  5. "When BERT Plays the Lottery, All Tickets Are Winning". EMNLP(2020) 

5.4 其他

  1. "Scaling Laws for Neural Language Models". arXiv(2020)

  2. "Extracting Training Data from Large Language Models". arXiv(2020) 

6. 高效的PLM

6.1 模型训练

  1. RoBERTa: "RoBERTa: A Robustly Optimized BERT Pretraining Approach". arXiv(2019) 

  2. "Efficient Training of BERT by Progressively Stacking". ICML(2019) 

  3. Megatron-LM: "Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism". arXiv(2019) 

  4. ELECTRA: "ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators". ICLR(2020) 

  5. "Large Batch Optimization for Deep Learning: Training BERT in 76 minutes". ICLR(2020) 

  6. GShard: "GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding". arXiv(2020) 

  7. Admin: "Understanding the Difficulty of Training Transformers". EMNLP(2020) 

  8. ZeRO: "ZeRO: Memory optimizations Toward Training Trillion Parameter Models". SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 

  9. Switch Transformers: "Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity". arXiv(2021) 

6.2 模型压缩

  1. DistilBERT: "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter". arXiv(2019) 

  2. PKD: "Patient Knowledge Distillation for BERT Model Compression". EMNLP(2019) 

  3. "Distilling Task-Specific Knowledge from BERT into Simple Neural Networks". arXiv(2019) 

  4. Q8BERT: "Q8BERT: Quantized 8Bit BERT". 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS 2019 

  5. ALBERT: "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations". ICLR(2020) 

  6. TinyBERT: "TinyBERT: Distilling BERT for Natural Language Understanding". EMNLP(2020) 

  7. Layerdrop: "Reducing Transformer Depth on Demand with Structured Dropout". ICLR(2020) 

  8. Q-BERT: "Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT". AAAI(2020) 

  9. MobileBERT: "MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices". ACL(2020) 

  10. "Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning". 5th Workshop on Representation Learning for NLP(2020) 

  11. MiniLM: "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers". arXiv(2020) 

  12. FastBERT: "FastBERT: a Self-distilling BERT with Adaptive Inference Time". ACL(2020) 

  13. DeeBERT: "DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference". ACL(2020) 

7. PLM的使用

7.1 两阶段

  1. "Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks". arXiv(2018) 

  2. "How to Fine-Tune BERT for Text Classification?". CCL(2019) 

  3. "Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks". ACL(2020) 

  4. "Intermediate-Task Transfer Learning with Pretrained Language Models: When and Why Does It Work?". ACL(2020) 

7.2 多任务

  1. MT-DNN: "Multi-Task Deep Neural Networks for Natural Language Understanding". ACL(2019) 

  2. "BAM! Born-Again Multi-Task Networks for Natural Language Understanding". ACL(2019) 

  3. "Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding". arXiv(2019) 

7.3 Adapter

  1. "BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning". ICML(2019) 

  2. Adapter: "Parameter-Efficient Transfer Learning for NLP". ICML(2019) 

7.4 Prompt

  1. PET: "Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference". EACL(2021) 

  2. "It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners". NAACL(2021) 

  3. "Prefix-Tuning: Optimizing Continuous Prompts for Generation". arXiv(2021)

  4. LM-BFF: "Making Pre-trained Language Models Better Few-shot Learners". ACL(2021) 

  5. "What Makes Good In-Context Examples for GPT-3?". arXiv(2021) 

  6. "The Power of Scale for Parameter-Efficient Prompt Tuning". arXiv(2021) 

7.5 其他

  1. "To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks". RepL4NLP(2019) 

  2. "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models". NAACL(2019) 

  3. "Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping". arXiv(2020) 

  4. SMART: "SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization". EMNLP(2020) 

  5. "Revisiting Few-sample BERT Fine-tuning". ICLR(2021) 

END -



Focal Loss --- 从直觉到实现

2021-07-28

ACL2021最佳论文VOLT:通过最优转移进行词表学习

2021-07-26

动荡下如何自救 | 社招一年收割BATDK算法offer

2021-07-27

谷歌出品!机器学习常用术语总结

2021-07-24


http://chatgpt.dhexx.cn/article/XCJGJaOO.shtml

相关文章

Antigen for exchange 部署+评测

antigen系列是Forefront系列的早期版本,基本上除了换了个名字意外别的界面都没有换,微软的windows让我们家喻户晓,可是微软做杀毒软件却远不及诺顿等杀软大牌厂商,当微软推出Forefront的时候,又一次的给人以惊喜&#…

Windows10内置Linux子系统初体验

转载自: http://www.jianshu.com/p/bc38ed12da1d WSL 前言 前段时间,机子上的win10又偷偷摸摸升级到了一周年正式版,比较无奈。不过之前听闻这个版本已经支持内置的linux子系统,于是就怀着好奇心试玩了一把。虽然期间遇到了很多问…

《预训练周刊》第29期:Swin Transformer V2:扩大容量和分辨率、SimMIM:用于遮蔽图像建模的简单框架...

No.29 智源社区 预训练组 预 训 练 研究 观点 资源 活动 关于周刊 本期周刊,我们选择了10篇预训练相关的论文,涉及图像处理、图像屏蔽编码、推荐系统、语言模型解释、多模态表征、多语言建模、推理优化、细胞抗原预测、蛋白结构理解和化学反应的探索。此…

《预训练周刊》第51期:无重构预训练、零样本自动微调、一键调用OPT

No.51 智源社区 预训练组 预 训 练 研究 观点 资源 活动 周刊订阅 告诉大家一个好消息,《预训练周刊》已经开启“订阅功能”,以后我们会向您自动推送最新版的《预训练周刊》。订阅方法: 方式1:扫描下面二维码,进入《预…

Antigen for LCS2005

Antigen For LCS2005<?xml:namespace prefix o ns "urn:schemas-microsoft-com:office:office" /> Antigen for LCS2005是一款应用于即时通信内的杀毒&#xff0c;防毒软件。 试验拓扑图如下&#xff1a; Berlin是域LCS的域控制器也是DNS服务器&#xff0c;…

forefront for antigen

forefront for antigen antigen软件是保护企业Exchange 2003和Exchange 2000的。可以有效的防止病毒通过邮件的传输来危害计算机&#xff0c;而且antigen软件集合了八家杀毒公司的引擎&#xff0c;是让人心动的一面&#xff0c;如果能把杀毒的工作做好&#xff0c;那是很有潜力…

详解Microsoft Antigen for exchange9.0部署与测试

今天为大家介绍的是Microsoft Forefront系列的早期版本Antiget&#xff0c;Antigen for exchange9.0集成了九款杀毒引擎。微软的windows已经让我们家喻户晓了&#xff0c;当微软推出Forefront的时候&#xff0c;又一次的给人以惊喜&#xff0c;最具有竞争力的就是微软用自己雄厚…

antigen for exchange 部署

今天部署antigen for exchange。这是基于exchange 的安全软件&#xff0c;有扫描邮件病毒的功能&#xff0c;等。搭建exchange 就不说了。 拓扑图如下&#xff0c; <?xml:namespace prefix v ns "urn:schemas-microsoft-com:vml" /><?xml:namespace pre…

Microsoft Antigen for Exchange 9.0+Exchangesp2 简单搭建与测试

网络的安全性一直是大家所讨论的问题&#xff0c;有完全的安全吗&#xff1f;呵呵&#xff0c;大家都是明白人&#xff0c;明白人不用细说&#xff0c;没有绝对的安全&#xff0c;只有相对意义下的安全&#xff0c;在企业中无所谓一些常用的服务安全性了&#xff0c;对于安全的…

Microsoft Antigen for LCS2005详细部署、客户端测试

前面的博文中我说了下Microsoft Antigen for Exchange搭建&#xff0c;今天我们在来说说微软在Forefront配合LCS详细搭建&#xff0c;大家知道LCS(Live Communications Server)即时通讯产品&#xff0c;和我们用的Q&#xff0c;MSN&#xff0c;旺旺一样&#xff0c;而我们有的企…

详解部署antigen for exchange及配置来实现邮件的安全及优化

详解部署antigen for exchange及实现邮件的安全及优化 现在科学技术越来越发达&#xff0c;竞争越来越激烈&#xff0c;安全成为忧患&#xff0c;尤其是自己发的邮件及给自己的邮件怕被别的公司知道&#xff0c;或者是怕别人利用邮件给自己发一些病毒之类的东西今天我们利用ant…

Antigen Detector(新冠试剂盒检测)

转自AI Studio&#xff0c;原文链接&#xff1a;Antigen Detector&#xff08;新冠试剂盒检测&#xff09; - 飞桨AI Studio 1、检测效果展示 2、Antigener_Detector思路说明 Antigener Detector通过两种方法串行&#xff0c;来完成检测。从而提高阳性样本的召回率。 首先是…

antigen简介

在Linux下经常需要进行终端操作&#xff0c;一个好的shell解释器可以帮助我们极大提高工作效率。有些同学可能听说过zshell和oh-my-zsh&#xff0c;前者是一个shell程序&#xff0c;由于功能比较强大&#xff0c;所以叫做z shell&#xff0c;意为终极shell&#xff1b;而后者是…

详解lcs+antigen的部署与配置来实现即时通讯的安全

详解lcsantigen的部署与配置来实现即时通讯的安全 我在上一篇中介绍了antigenexchange的配置不知大家是否能在工作中用到&#xff0c;今天我来介绍一下lcsantigen的部署与配置。 LCS( Live Communications Server)即时通讯服务&#xff0c;类似于QQ、MSN之类的。 今天我们做的实…

使用antigen轻松打造赏心悦目的shell环境

一提到Shell环境&#xff0c;很多人可能想到的就是那种神秘的黑框界面&#xff0c;但是其实Shell环境也可以设置成非常酷的样子&#xff0c;并带有自动完成、自动补全、人性化提示等各种功能。可能也有同学还听说过ohmyzsh这类集成了各种Zsh插件的方便项目&#xff0c;今天介绍…

tf.invert_permutation

tf.invert_permutation(x, nameNone) tf.math.invert_permutation(x, nameNone) TensorFlow目录总结 入参 / 出参含义取值范围xA Tensor. Must be one of the following types: int32, int64. 1-D.其中取值【i】的范围&#xff1a;y[x[i]] i for i in [0, 1, …, len(x) - …

PAT甲级-二叉树的遍历-1102 Invert a Binary Tree解题思路

1102 Invert a Binary Tree (25 分) 思路 翻转二叉树 后序遍历翻转即可&#xff0c;由于给出每个结点的左右儿子&#xff0c;所以这里用到二叉树的静态写法更加方便 这里有个坑&#xff0c;bool数组初始化为false才是有效的&#xff0c;别的效果不行&#xff0c;暂时不知道为…

create_generated_clock invert preinvert shift_edge是否符合设计真实状态很重要【示例2】

create_generated_clock符合设计真实状态很重要 不是所有的invert clock与non-invert clock都有直接的反相关系另外一种计数器方式生成的时钟存在一定阶段的反相关系定义 cnt_div约束频率切换的问题cnt_div与 upcnt_div是反相关系 仍然基于【示例1】的RTL代码。 不是所有的inv…

【水下目标检测】Underwater object detection using Invert Multi-Class Adaboost with deep learning

原文&#xff1a;Underwater object detection using Invert Multi-Class Adaboost with deep learning 论文被International Joint Conference on Neural Networks (IJCNN) 2020&#xff08;CCF C类&#xff09;收录&#xff0c; 开源代码&#xff1a;https://github.com/Long…

LVGL8_Esp32_颜色反转设置-INVERT_COLORS

在lvgl8中设置颜色反转。 找到自己对应的驱动的头文件定义部分&#xff0c;手动定义CONFIG_LV_INVERT_COLORS即可。 个人见解&#xff0c;感谢阅读。