LRU和LFU的区别

article/2025/10/17 0:53:33

对于web开发而言,缓存必不可少,也是提高性能最常用的方式。无论是浏览器缓存(如果是chrome浏览器,可以通过chrome:://cache查看),还是服务端的缓存(通过memcached或者redis等内存数据库)。缓存不仅可以加速用户的访问,同时也可以降低服务器的负载和压力。那么,了解常见的缓存淘汰算法的策略和原理就显得特别重要。

常见的缓存算法

  • LRU (Least recently used) 最近最少使用,如果数据最近被访问过,那么将来被访问的几率也更高。
  • LFU (Least frequently used) 最不经常使用,如果一个数据在最近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小。
  • FIFO (Fist in first out) 先进先出, 如果一个数据最先进入缓存中,则应该最早淘汰掉。

LRU缓存

像浏览器的缓存策略、memcached的缓存策略都是使用LRU这个算法,LRU算法会将近期最不会访问的数据淘汰掉。LRU如此流行的原因是实现比较简单,而且对于实际问题也很实用,良好的运行时性能,命中率较高。下面谈谈如何实现LRU缓存:

  • 新数据插入到链表头部
  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部
  • 当链表满的时候,将链表尾部的数据丢弃

LRU Cache具备的操作:

  • set(key,value):如果key在hashmap中存在,则先重置对应的value值,然后获取对应的节点cur,将cur节点从链表删除,并移动到链表的头部;若果key在hashmap不存在,则新建一个节点,并将节点放到链表的头部。当Cache存满的时候,将链表最后一个节点删除即可。
  • get(key):如果key在hashmap中存在,则把对应的节点放到链表头部,并返回对应的value值;如果不存在,则返回-1。

LRU的c++实现

LRU实现采用双向链表 + Map 来进行实现。这里采用双向链表的原因是:如果采用普通的单链表,则删除节点的时候需要从表头开始遍历查找,效率为O(n),采用双向链表可以直接改变节点的前驱的指针指向进行删除达到O(1)的效率。使用Map来保存节点的key、value值便于能在O(logN)的时间查找元素,对应get操作。

双链表节点的定义:

struct CacheNode {int key;      // 键int value;    // 值CacheNode *pre, *next;  // 节点的前驱、后继指针CacheNode(int k, int v) : key(k), value(v), pre(NULL), next(NULL) {}
};

对于LRUCache这个类而言,构造函数需要指定容量大小

LRUCache(int capacity)
{size = capacity;      // 容量head = NULL;          // 链表头指针tail = NULL;          // 链表尾指针
}

双链表的节点删除操作:

void remove(CacheNode *node)
{if (node -> pre != NULL){node -> pre -> next = node -> next;}else{head = node -> next;}if (node -> next != NULL){node -> next -> pre = node -> pre;}else{tail = node -> pre;}
}

将节点插入到头部的操作:

void setHead(CacheNode *node)
{node -> next = head;node -> pre = NULL;if (head != NULL){head -> pre = node;}head = node;if (tail == NULL){tail = head;}
}

get(key)操作的实现比较简单,直接通过判断Map是否含有key值即可,如果查找到key,则返回对应的value,否则返回-1;

int get(int key)
{map<int, CacheNode *>::iterator it = mp.find(key);if (it != mp.end()){CacheNode *node = it -> second;remove(node);setHead(node);return node -> value;}else{return -1;}
}

set(key, value)操作需要分情况判断。如果当前的key值对应的节点已经存在,则将这个节点取出来,并且删除节点所处的原有的位置,并在头部插入该节点;如果节点不存在节点中,这个时候需要在链表的头部插入新节点,插入新节点可能导致容量溢出,如果出现溢出的情况,则需要删除链表尾部的节点。

void set(int key, int value)
{map<int, CacheNode *>::iterator it = mp.find(key);if (it != mp.end()){CacheNode *node = it -> second;node -> value = value;remove(node);setHead(node);}else{CacheNode *newNode = new CacheNode(key, value);if (mp.size() >= size){map<int, CacheNode *>::iterator iter = mp.find(tail -> key);remove(tail);mp.erase(iter);}setHead(newNode);mp[key] = newNode;}
}

至此,LRU算法的实现操作就完成了,完整的源码参考:https://github.com/cpselvis/leetcode/blob/master/solution146.cpp

以上原文链接:https://www.cnblogs.com/cpselvis/p/6272096.html

补充:

LRU和LFU的区别:

LRU是最近最少使用页面置换算法(Least Recently Used),也就是首先淘汰最长时间未被使用的页面!

LFU是最近最不常用页面置换算法(Least Frequently Used),也就是淘汰一定时期内被访问次数最少的页!

比如,第二种方法的时期T为10分钟,如果每分钟进行一次调页,主存块为3,若所需页面走向为2 1 2 1 2 3 4

注意,当调页面4时会发生缺页中断

若按LRU算法,应换页面1(1页面最久未被使用) 但按LFU算法应换页面3(十分钟内,页面3只使用了一次)

可见LRU关键是看页面最后一次被使用到发生调度的时间长短,

而LFU关键是看一定时间段内页面被使用的频率!


http://chatgpt.dhexx.cn/article/Vjpl38cf.shtml

相关文章

LFU算法族:LFU算法

LFU算法族相关文章目录汇总&#xff1a; LFU算法&#xff08;本文&#xff09;​​​​​​​ LFU-Aging算法 window-LFU算法 1、原理 LFU&#xff08;Least Frequently Used&#xff09;算法&#xff0c;即最少访问算法&#xff0c;根据访问缓存的历史频率来淘汰数据&…

LFU算法详解

LFU算法&#xff1a;least frequently used&#xff0c;最近最不经常使用算法 对于每个条目&#xff0c;维护其使用次数 cnt、最近使用时间 time。 cache容量为 n&#xff0c;即最多存储n个条目。 那么当我需要插入新条目并且cache已经满了的时候&#xff0c;需要删除一个之…

算法题就像搭乐高:手把手带你拆解 LFU 算法

f学算法认准labuladong 东哥带你手把手撕力扣???? 点击下方卡片即可搜索???? PS&#xff1a;以后每篇文章最后&#xff0c;labuladong 都会推荐一些自己学过的优质技术专栏&#xff0c;供读者参考。 上篇文章 算法题就像搭乐高&#xff1a;手把手带你拆解 LRU 算法 写了…

LRU LFU 概念、底层原理及其实现 超详细~

0. 前置提要 本篇约为8650字&#xff0c;阅读完需要约40~60分钟。主要介绍页面置换算法,LRU和LFU的原理及其实现&#xff0c;对应leetcode140和460&#xff0c;如果能给个赞就更好了^-^。 1.从内存置换算法说起 计算机的运行的程序和数据保存在内存中&#xff0c;内存的空间是有…

如何实现LFU缓存(最近最少频率使用)

目录 1.什么是LFU缓存&#xff1f; 2.LFU的使用场景有哪些&#xff1f; 3.LFU缓存的实现方式有哪些&#xff1f; 4.put/get 函数实现具体功能 1.什么是LFU缓存&#xff1f; LFU缓存是一个具有指定大小的缓存&#xff0c;随着添加元素的增加&#xff0c;达到容量的上限&…

LFU缓存策略算法

在之前的文章中&#xff0c;我们介绍了如何设计一个LRU算法–如何设计LRU Cache算法&#xff0c;今天我们再聊一聊另一种缓存策略LFU。目前博主个人博客已经搭建发布&#xff0c;后期相关文章也会发布在上面&#xff0c;大家有兴趣可以去上面学习&#xff0c;点击即可前往文青乐…

国内编程学习网站

在本文中&#xff0c;我们介绍了来自两岸三地的编程学习网站&#xff0c;通过它们&#xff0c;不仅可以一窥国内App开发的发展现状&#xff0c;而且这些网站各有特点&#xff0c;无论是主打游戏学习还是视频学习&#xff0c;对于想要自学的开发者而言&#xff0c;都是个好去处。…

如何高效的自学编程

现在的社会对于IT人才的需求越来越大&#xff0c;程序员的薪资水平在各个行业中都算比较高的。所以很多人都想往IT行业发展&#xff0c;已经身处这个行业的人也需要不断的学习新的知识&#xff0c;因为IT行业的技术更新实在是太快了&#xff0c;不像传统行业那样是越老越吃香。…

电脑编程自学(零基础自学编程怎么入门)

电脑编程自学入手:确定编程学习的方向。编程语言有多种:php,C++,C,C#,JAVA,Python等,每种语言都有不同的优缺点,可以根据自己的兴趣方向选择一门编程语言作为自己的学习目标。 基础阶段的语法学习。学习任何一门编程语言,都需要掌握其编程的语法规则,可以通过阅读一…

自学编程的 6 个致命误区

嗨&#xff0c;小伙伴们大家好&#xff0c;我是沉默王二。本篇文章来和大家聊聊自学编程中的一些误区——这是我在 B 站上看了羊哥的一期视频后有感而发的文章。因为确实有很多读者也曾私信问过我这些方面的问题&#xff0c;很有代表性&#xff0c;所以我就结合自己的亲身体会来…

java编程自学app_Java编程自学软件

Java编程自学软件是是一款Java学习软件。Java编程自学软件为用户提供Java语言&#xff0c;ISh和SQL 数据库编程等技术方便用户学习Java知识。有需要自学Java编程的小伙伴们可在华军软件园下载Java编程自学软件。 Java编程自学软件功能特色 专业化、具体化。 有真正意义上的实战…

c语言 软件编程入门自学,软件编程入门自学

文章目录[隐藏] 软件编程入门自学 作为界面&#xff0c;MFC方便上手&#xff0c;QT也不错。您好&#xff0c;自学编程建议从C语言开始。可以说60%~80%的程序员都是从C语言开始的。 众所周知&#xff0c;编程语言分为结构化编程语言和面向对象编程语言。结构化编程语言比面向对象…

自学编程,收藏好这7个免费网站,可省你上万块钱的学费

如果你要自学编程&#xff0c;一定要收藏好这7个网站&#xff0c;上面免费的优质教程很多&#xff0c;完全可以省去你上万块钱的学费&#xff01; 话不多说&#xff0c;直接上干货&#xff01; 第一个&#xff0c;W3school 一个主打图文教程的网站&#xff0c;不管是前端开发…

蛙跳算法优化VMD参数,惩罚系数,分解层数,matlab语言 ,最小包络熵为适应度函数。

蛙跳算法优化VMD参数&#xff0c;惩罚系数&#xff0c;分解层数&#xff0c;matlab语言 &#xff0c;最小包络熵为适应度函数。

粒子群算法(6)-----几个适应度评价函数

下面给出几个适应度评价函数&#xff0c;并给出图形表示 头几天机子种了病毒&#xff0c;重新安装了系统&#xff0c;不小心把程序全部格式化了&#xff0c;痛哭&#xff01;&#xff01;&#xff01;没办法&#xff0c;好多程序不见了&#xff0c;现在把这几个典型的函数重新编…

粒子群算法几个适应度评价函数

http://blog.csdn.net/niuyongjie/article/details/1619496 粒子群算法(6)-----几个适应度评价函数 标签&#xff1a; 算法图形function 2007-05-21 16:28 37960人阅读 评论(25) 收藏 举报 分类&#xff1a; 粒子群算法研究&#xff08;8&#xff09; 版权声明&#xff1…

遗传算法优化LSTM网络结构(实现自动根据适应度函数:即准确率来全局搜索最佳网络结构):主要被优化参数:网络层数,每层的神经元个数,全连接的层数,全连接层的神经元个数。代码有详细注解

代码视频链接:https://www.bilibili.com/video/BV19q4y1Q7DR/ 代码效果图: 1.优化参数 本文优化的是LSTM的层数参数和各层神经元参数,其中包含了lstm层和Dense层,其中我们规定了神经网络的层数不超过3层,每层的神经元个数在[32,256]之间。 2.注意事项 2.1.本文的遗传算…

粒子群算法的几个适应度评价函数

下面给出几个适应度评价函数&#xff0c;并给出图形表示 第一个函数&#xff1a;Griewank函数&#xff0c;图形如下所示&#xff1a; 适应度函数如下&#xff1a;&#xff08;为了求最大值&#xff0c;我去了所有函数值的相反数&#xff09; function y Griewank(x) % Griew…

【人工智能】人工智能二——遗传算法的基本概念遗传算法的基本算法(编码群体设定适应度函数选择交叉变异遗传算法步骤)解决带约束的函数优化问题多目标的遗传算法遗传算法的改进算法

人工智能二——遗传算法的基本概念&遗传算法的基本算法&#xff08;编码&群体设定&适应度函数&选择&交叉&变异&遗传算法步骤&#xff09;&解决带约束的函数优化问题&多目标的遗传算法&遗传算法的改进算法 遗传算法的基本概念遗传算法的…

【建模必备】遗传算法的基本原理与步骤(适应度函数与适应度分配)

如果喜欢这里的内容&#xff0c;你能够给我最大的帮助就是转发&#xff0c;告诉你的朋友&#xff0c;鼓励他们一起来学习。 If you like the content here, you can give me the greatest help is forwarding, tell your friends, encourage them to learn together.