云计算、雾计算、边缘计算、移动边缘计算和自动驾驶的关系

article/2025/10/5 10:47:09

什么是云计算呢?

简单来说,云计算就是将很多计算机资源和服务集中起来,人们只要接入互联网,将能很轻易、方便的访问各种基于云的应用信息,省去了安装和维护的繁琐操作。

640?wx_fmt=png

 

当然,个人和企业也能使用云计算中心提供的服务,或者在云端搭建自己所需要的信息服务,只不过需要付费。

这样看来,云计算是不是简单、好用,但现实不是这样的。当个人和企业过渡依赖云计算时,就会出现各种数据的处理都希望往云上面靠的现象,结果呢?数据多了以后,效率降低、时延增大,很多场景用不了,这让业界很是苦恼

遇到问题可以换种思维嘛!集中式不行就试试分散式,所以又有研究人员提出了边缘计算的概念,这种模式的提出,瞬间解了很多场景的燃眉之急。

640?wx_fmt=gif

 

什么叫边缘计算?

 

如果说云计算是集中式大数据处理,那么边缘计算就可以理解为边缘式大数据处理。

何为边缘?

通用术语表示就是,邻近、接近。放在这句话中就是,临近计算或接近计算。

想象一下,数据每次都要传到遥远的云端,云端处理完,才能回传回来,很麻烦吧!

边缘计算则在想,为啥要传那么远呢?

数据那么多,传来传去浪费时间不说,还效率不高,要不先在设备端处理数据,筛选掉没用的数据,等数据少了再传给云,这样云端的压力就会骤然减轻了!

所以说,边缘计算应该是对云计算的一种补充和优化!它们两个是共存的状态。

从边缘计算的概念中可以看出,由于距离数据源头近,所以它具有分布式、低延时、效率高等特点。深层次去看,它还具有以下几大特点

第一,缓解流量压力;边缘计算在进行云端传输时通过边缘节点进行一部分简单数据处理,可以筛选掉没用的信息数据,相当于减少了数据带宽的消耗。

第二,对于芯片性能有高要求;由于边缘计算都是在设备端处理数据的,所以对于芯片性能的要求很高。

 

第三,节省成本;云计算和边缘计算结合,成本仅占单独使用云计算的40%左右。

第四,提高安全性;边缘计算的数据可采用加密算法后,在打包回传到云端。

640?wx_fmt=png

 

目前,边缘计算主要被用于车联网、智能安防以及区块链等场景中,亚马逊、微软及英特尔已经着手布局边缘计算。

640?wx_fmt=png

 

说到边缘计算,不得不提一下另一个重要的概念:移动边缘计算(MEC)

概念比较多,我们慢慢来看!

 

为什么提到移动边缘计算?

 

2013年,IBM联合Nokia Siemens网络共同推出了一款计算平台,可在无线基站内部运行应用程序,向移动用户提供业务。

2014年,欧洲电信标准协会(ETSI)成立移动边缘计算规范工作组,宣布推动移动边缘计算标准化。其基本思想是把云计算平台从移动核心网络内部迁移到移动接入网边缘,实现计算及存储资源的弹性利用。

说到这里,估计诸位还是云里雾里,那么,什么叫移动边缘计算呢?

我们知道,设备直接传输信息需要网络,而移动边缘计算就是利用无线接入网络就近提供电信用户IT所需服务和云端计算功能,而创造出一个具备高性能、低延迟与高带宽的电信级服务环境。说到底,还是一场数据传输时间争夺战,传输时间越短越好。

从运营商的角度来看,网络分为无线接入网、移动核心网以及应用网络三大部分。

其中,无线接入网由基站组成,负责移动终端的接入。

移动核心网由路由器、服务器组成,负责将无线基站连接到外部网络。

应用网络就是各种应用服务器工作的地方,实际上就是服务器、数据中心、PC等。

可以看出,这三种网络完成了我们平时的设备之间数据传输的工作。其中,运营商主要掌握无线接入网和移动核心网两种,应用网络应该掌握在OTT手中。

本来这三种网路结构已经够用了,但随着各种新服务(AR/VR、自动驾驶)的出现,传统网络结构逐渐不堪重负,所以,MEC出现了。

640?wx_fmt=png

图片来源:SDNLAB

MEC背后的逻辑非常简单。将网络业务“下沉”到更接近用户的无线接入网侧,降低数据传输时延,缓解网络堵塞。即离源数据处理、分析和存储越近,数据时延越低

通过处理、分析和存储在网络边缘生成的数据,运营商和提供商可以提供增强的响应时间和改进的服务,同时还为更先进的概念(如无人驾驶车辆和增强的自动化)奠定基础。

自动驾驶为何需要MEC?

 

要知道,自动驾驶汽车有成百上千个传感器,每驾驶8个小时会产生40TB的数据,这些数据中大多数并不重要,而且把这么大体量的数据传到云端是不切实际的。同时,自动驾驶汽车对于数据传输时延极为敏感,数据传输延迟1ms,都可能导致一场惨剧发生。所以为了降低带宽、保证低时延,MEC便成为了比较适用的网络结构。

 

在车辆高速度运动过程中,位置信息变化十分迅速。而最末端的移动边缘计算服务器还可以置于车身上,能够精确地实时感知车辆位置的变动,提高通信的可靠性。

移动边缘计算服务器对无人驾驶汽车数据实时进行数据处理和分析,并将分析所得结果以极低延迟(通常是毫秒级)传送给临近区域内其他联网车辆人,以便车辆做出决策。这种方式比其他处理方式更便捷、更自主、更可靠。

此外,MEC还被用于解决自动驾驶汽车数据缓存问题。不久前,韩国庆熙大学计算机科学与工程系的AnselmeNdikumana等人提出了基于深度学习的缓存和MEC中的4C方法来改进自动驾驶汽车中的娱乐服务的解决方案。

他们主要方法概括如下

为了满足不同乘客在自动驾驶汽车中对不同娱乐内容的需求。首先,采用卷积神经网络(CNN)方法通过面部识别来判断他们的年龄和性别。然后,根据娱乐内容(例如音乐,视频和游戏数据)对于受众年龄以及性别的偏向性,高速缓存对应的娱乐内容。

实现上面的过程,需要MEC和DC(车对数据中心通信)支持自动驾驶汽车。在DC,他们提出了一个MultiLayer感知器(MLP)框架来预测在自动驾驶汽车的特定区域内请求内容的概率。

然后,MLP预测输出部署在紧邻自动驾驶汽车的MEC服务器(RSU)处。在非高峰时段,每个MEC服务器使用MLP输出进行下载,然后缓存具有高请求概率的内容。选择MLP优于其他预测方法,如AutoRegressive(AR)和自回归移动平均(ARMA)模型,MLP有能力处理线性和非线性预测问题。

对于需要缓存的内容,自动驾驶汽车需要从MEC服务器下载MLP输出,然后将其与CNN输出进行比较。为了比较,该方法也结合了k-means和二元分类。

使用MEC中的4C组件进行深度学习,在自动驾驶汽车中制定用于娱乐服务的缓存,以最大限度地减少内容下载延迟。

 目前,由于3G/4G数据传输时延过高达40ms,无法满足自动驾驶10ms的基本需求,所以MEC在3G/4G时代,无法很好的被用于自动驾驶,只有等到5G技术成熟后,MEC才有望走进自动驾驶。

可以预想,在5G时代,MEC可以广泛应用在各个领域,如:交通运输系统、智能驾驶、实时触觉控制、增强现实等领域。

当然,MEC在目前火热的AI领域也将有不错的应用,比如:在图像识别方面,服务器相对于移动终端在处理时间及功耗上有显著优势,处理时间增加100毫秒左右,就能提高10-20%的准确率。这意味着在不改进现有算法的情况下,通过引入MEC技术,就可通过降低服务器与移动终端之间的时延改善识别效果。

 

总结

MEC前景极好,但也给传统的运营模式带来了一定的挑战。

作为一项新兴的技术,MEC不仅是一个网络边缘虚拟化的技术平台,还涉及到整体网络架构、第三方应用部署、移动网络能力开放、管理和编排等多个方面

所以,未来MEC业务的展开不仅需要华为、中兴通讯、爱立信等通讯设备厂商,也需要英特尔、高通等芯片厂商,以及中国移动、联通、电信等运营商的支持。因此,MEC要实现快速发展,就必须构建完整的生态体系,其商业模式需要各厂商共同开发

 

概括性总结(云计算、雾计算、边缘计算、移动边缘计算)

移动边缘计算Mobile Edge Computing, MEC)可利用无线接入网络就近提供电信用户IT所需服务和云端计算功能,而创造出一个具备高性能、低延迟与高带宽的电信级服务环境,加速网络中各项内容、服务及应用的快速下载,让消费者享有不间断的高质量网络体验。

 

边缘计算起源于传媒领域,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。

而边缘计算产业联盟(Edge Computing Consortium,简称ECC),对边缘计算的定义如下:边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。它可以作为联接物理和数字世界的桥梁,使能智能资产、智能网关、智能系统和智能服务。是对云计算的一种补充和优化。

雾计算(Fog Computing),在该模式中数据、(数据)处理和应用程序集中在网络边缘的设备中,而不是几乎全部保存在云中,是云计算(Cloud Computing)的延伸概念,由思科(Cisco)提出的。这个因“云”而“雾”的命名源自“雾是更贴近地面的云”这一名句。

雾计算和云计算一样,十分形象。云在天空飘浮,高高在上,遥不可及,刻意抽象;而雾却现实可及,贴近地面,就在你我身边。雾计算并非由性能强大的服务器组成,而是由性能较弱、更为分散的各类功能计算机组成,渗入工厂、汽车、电器、街灯及人们物质生活中的各类用品。

云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。云计算早期,简单地说,就是简单的分布式计算,解决任务分发,并进行计算结果的合并。因而,云计算又称为网格计算。通过这项技术,可以在很短的时间内(几秒种)完成对数以万计的数据的处理,从而达到强大的网络服务。

综上所述,无论是边缘计算、雾计算、多接入边缘计算、移动边缘计算,还是,其核心都是通过云端和物联网设备之间的各种现有或新增设备,将计算、网络、存储等能力向网络边缘侧扩展,充分利用整个路径上各种设备的处理能力,就地存储和处理隐私和冗余数据,降低网络带宽占用,提高系统实时性和可用性。

此外,边缘计算相关的各个组织和公司也在推进合作,例如OpenFogETSI合作雾化MEC技术、CORDOpenFog协调互操规范、英特尔参与各大边缘计算组织等。

因此,雾计算、多接入边缘计算、移动边缘计算、移动云计算等概念最终将走向融合,可以统称为边缘计算。


http://chatgpt.dhexx.cn/article/UsV1I4JJ.shtml

相关文章

【笔记】雾计算中移动应用的优先级约束任务调度

目录 前置 摘要 介绍 模型 应用模型 计算和通信模型 能耗模型 问题定义 NP难 预功率分配算法 能量约束调度 算法1:具有启发式H的能量约束列表调度(ECLS-H) 时间约束调度 算法2:具有启发式H的时间约束列表调度&#…

文章云计算的兄弟,雾计算要来了

转自: http://tech.china.com/news/company/892/20160219/21553952_all.html#page_2 现在正在流行的“云计算”,是把大量数据放到“云”里去计算或存储。这样,就解决了目前电脑或手机存储量不够,或者是运算速度不够快的问题&#…

话题 | 雾计算和边缘计算有什么区别?

原文:http://readwrite.jp/infrastructure/32649/ 随着物联网的发展,经常听到「雾计算」和「边缘计算」这样的单词。 雾计算这个词相对来说是最近出现的一个词。因为和云相比位置上更接近设备,所以表示为雾,它是作为实现IoT的结构…

边缘计算和雾计算什么关系_什么是雾计算?

边缘计算和雾计算什么关系 By now most people are more than familiar with the concept of Cloud Computing, but what about the new concept referred to as Fog Computing? Today’s Q&A post takes a look at this new concept and how it differs from Cloud Compu…

【知识积累】Edge vs Fog Computing 边缘计算和雾计算的基本介绍

前言 边缘计算和雾计算都可以被定义为技术平台,使计算过程更接近数据产生和收集的地方,以下详细解释了这两个概念。 顾名思义,边缘计算发生在应用网络的“边缘”。从拓扑结构上看,“边缘计算机”在网络的端点上(如控…

大话:边缘计算、雾计算、云计算

云计算 一种利用互联网实现随时随地、按需、便捷地使用共享计算设施、存储设备、应用程序等资源的计算模式。 云计算系统由云平台、云存储、云终端、云安全四个基本部分组成,云平台从用户的角度可分为公有云、私有云、混合云等。 通过从提供服务的层次可分为&#x…

边缘计算与雾计算

现在人们常将云计算、边缘计算、雾计算放在一起来讨论,而云计算大家都很熟悉了,但是往往很难搞清楚什么是边缘计算,什么是雾计算,而网络上的文章多为长篇大论,又说不清楚,本文将尽量用浅显明了的方式对其进…

雾计算主要有哪些优点,主要面临哪些挑战?

雾平台由数量庞大的雾节点(即上文中雾使用的硬件设备,以及设备内的管理系统)构成。这些雾节点可以各自散布在不同地理位置,与资源集中的数据中心形成鲜明对比。 根据以上内容,可以总结出雾计算与云计算的不同&#xf…

区分云计算,边缘计算,雾计算

物联网架构 Edge Layer之下应该还有一个:Device Layer 设备层负责物联网设备的传感器采集、监控、数据的实时分析(需要使用其他技术)等信息。 物联网架构中,服务组织是自下向上的,即边缘计算的结果可以提供给雾计算用于…

雾计算

雾计算,也称为雾或雾化的联网. 其目标是改善效率的雾化和减少的数据传送到云端进行处理、分析和存储。这往往改善效率,尽管它也可用于安全和合规原因。 普适计算应用包括雾智能电网,智慧城市,智能楼宇车辆网络,和软件…

雾计算?边缘计算?云里雾里还被边缘?

雾计算?边缘计算?云里雾里还被边缘? 我们都知道云计算,近两年又出现了雾计算、边缘计算,搞得人云里雾里分不清。这些概念究竟是什么意思?和我们的生活有什么关系?这篇文章来一探究竟。 1、雾计算…

什么是雾计算?

什么是雾计算: 去中心化和灵活性是雾计算和云计算的主要区别。雾计算,也称为雾网络或雾化,描述了一种分散的计算结构,位于云和产生数据的设备之间。这种灵活的结构使用户能够将资源(包括应用程序及其生成的数据&#…

存储网络架构——DAS、NAS、SAN、分布式组网架构

目录 DAS直连式存储 NAS网络附加存储 SAN存储 存储区域网络 分布式存储组网 DAS直连式存储 DAS遇到的挑战 NAS网络附加存储 向主机提供文件服务;文件系统由存储设备维护,用户访问文件系统,不直接访问底层存储 拥有所有主机上文件与底层存储空…

分布式存储Ceph 架构 以及 IO算法流程简介

Ceph 简介和特点 Ceph简介 : Ceph是一个统一的分布式存储系统,具有较好的性能、高可用性和可扩展性。 一个定义看上去会让初学者优点 “懵” ,为了有一个更深入 更直观的理解,下来我们分句来解读。 统一的分布式存储系统: 即支持传统的块…

1.华为分布式存储fusionstorage介绍

引论: 行业分布式解决方案: 1.Ceph 应用最多的开源分布式解决方案 2.Glusterfs 3.VMware VSAN 4.fusionStorage 华为 一、传统企业级别存储和Fsuion storage 对比 1.传统企业级存储控制器扩展有瓶颈,存储例如18000V6扩展到32控制器&#xf…

使用ceph搭建分布式存储系统

实验目的: 掌握ceph的配置和使用方法掌握分布式存储系统架构规划和设计方法理解块存储,文件存储,对象存储的实现方法 实验步骤: 1.规划设计 准备四台虚拟机(有条件部署三台服务器,一台计算机更好&#…

RAID和分布式存储的对比

传统的存储,一般是指用商用硬盘构建稳固的存储系统,通常会用到RAID技术,这是一种被研究的很透彻的存储技术,有大量的相关软硬件,成本已降低到可接受的程度。 分布式存储,一般是指用大量廉价的磁盘&#xf…

软硬件结合,分布式数据库存储架构优化实践

本文将介绍分布式数据库--KaiwuDB 的存储架构,以及 KaiwuDB 技术团队在其 KV 存储引擎基础上所做的优化实践。 KaiwuDB 整体存储架构 KaiwuDB 采用分层架构,分为计算层与存储层,其总体架构如下图所示: 在 OLTP 场景下&#xff0…

分布式存储系统HDFS

3.1 HDFS简介 Hadoop平台解决两大核心问题: 分布式存储分布式处理 HDFS就是解决海量数据分布式存储 背景:大数据时代,对于海量的数据,单个计算机无法处理,只能借助整个集群来处理海量数据。 文件系统结构&#xff0…

分布式MySQL架构

分布式数据库一般是以下的这种结构,计算层获取元数据层信息进行路由。下面说下各个层级的目的: (1)计算层就是单机时的SQL层,用来对数据访问进行权限检查、路由访问,以及对计算结果等操作。 (2…