Java多线程中锁的理解与使用

article/2025/10/20 19:08:02

1.简介

锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等 ) 。

2.Java锁的种类

  • 公平锁/非公平锁
  • 可重入锁
  • 独享锁/共享锁
  • 互斥锁/读写锁
  • 乐观锁/悲观锁
  • 分段锁
  • 偏向锁/轻量级锁/重量级锁
  • 自旋锁

上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定的解释。

公平锁/非公平锁

公平锁是指多个线程按照申请锁的顺序来获取锁。
非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁。有可能,会造成优先级反转或者饥饿现象。
对于Java ReentrantLock而言,通过构造函数指定该锁是否是公平锁,默认是非公平锁。非公平锁的优点在于吞吐量比公平锁大。
对于synchronized而言,也是一种非公平锁。由于其并不像ReentrantLock是通过AQS的来实现线程调度,所以并没有任何办法使其变成公平锁。

可重入锁

可重入锁又名递归锁,是指在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。对于Java ReentrantLock而言, 其名字是Re entrant Lock即是重新进入锁。对于synchronized而言,也是一个可重入锁。可重入锁的一个好处是可一定程度避免死锁。

synchronized void setA() throws Exception{Thread.sleep(1000);setB();
}synchronized void setB() throws Exception{Thread.sleep(1000);
}

上面的代码就是一个可重入锁的一个特点,如果不是可重入锁的话,setB可能不会被当前线程执行,可能造成死锁。

独享锁/共享锁

独享锁是指该锁一次只能被一个线程所持有;共享锁是指该锁可被多个线程所持有。

对于Java ReentrantLock而言,其是独享锁。但是对于Lock的另一个实现类ReadWriteLock,其读锁是共享锁,其写锁是独享锁。读锁的共享锁可保证并发读是非常高效的,读写、写读 、写写的过程是互斥的。独享锁与共享锁也是通过AQS来实现的,通过实现不同的方法,来实现独享或者共享。对于synchronized而言,当然是独享锁。

互斥锁/读写锁

上面说到的独享锁/共享锁就是一种广义的说法,互斥锁/读写锁就是具体的实现。互斥锁在Java中的具体实现就是ReentrantLock;读写锁在Java中的具体实现就是ReadWriteLock。

乐观锁/悲观锁

乐观锁与悲观锁不是指具体的什么类型的锁,而是指看待并发同步的角度。

悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。比如Java里面的同步原语synchronized关键字的实现就是悲观锁。

乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS(Compare and Swap 比较并交换)实现的。

分段锁

分段锁其实是一种锁的设计,并不是具体的一种锁,对于ConcurrentHashMap而言,其并发的实现就是通过分段锁的形式来实现高效的并发操作,ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap(JDK7与JDK8中HashMap的实现)的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表;同时又是一个ReentrantLock(Segment继承了ReentrantLock)。当需要put元素的时候,并不是对整个HashMap进行加锁,而是先通过hashcode来知道他要放在那一个分段中,然后对这个分段进行加锁,所以当多线程put的时候,只要不是放在一个分段中,就实现了真正的并行的插入。但是,在统计size的时候,可就是获取HashMap全局信息的时候,就需要获取所有的分段锁才能统计。

分段锁的设计目的是细化锁的粒度,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。

偏向锁/轻量级锁/重量级锁

这三种锁是指锁的状态,并且是针对synchronized。在Java 5通过引入锁升级的机制来实现高效synchronized。这三种锁的状态是通过对象监视器在对象头中的字段来表明的。

偏向锁是指一段同步代码一直被一个线程所访问,那么该线程会自动获取锁。降低获取锁的代价。

轻量级锁是指当锁是偏向锁的时候,被另一个线程所访问,偏向锁就会升级为轻量级锁,其他线程会通过自旋的形式尝试获取锁,不会阻塞,提高性能。

重量级锁是指当锁为轻量级锁的时候,另一个线程虽然是自旋,但自旋不会一直持续下去,当自旋一定次数的时候,还没有获取到锁,就会进入阻塞,该锁膨胀为重量级锁。重量级锁会让其他申请的线程进入阻塞,性能降低。

自旋锁

在Java中,自旋锁是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU。

3.锁的使用

1.预备知识

1.AQS

AbstractQueuedSynchronized 抽象的队列式的同步器,AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的ReentrantLock/Semaphore/CountDownLatch…
image

AQS维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。state的访问方式有三种:

getState()
setState()
compareAndSetState()

AQS定义两种资源共享方式:Exclusive(独占,只有一个线程能执行,如ReentrantLock)和Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false

以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

再以CountDownLatch以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。

一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。

2.CAS

CAS(Compare and Swap 比较并交换)是乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。   

CAS操作中包含三个操作数——需要读写的内存位置(V)、进行比较的预期原值(A)和拟写入的新值(B)。如果内存位置V的值与预期原值A相匹配,那么处理器会自动将该位置值更新为新值B,否则处理器不做任何操作。无论哪种情况,它都会在CAS 指令之前返回该位置的值(在CAS的一些特殊情况下将仅返回CAS是否成功,而不提取当前值)。CAS有效地说明了“ 我认为位置V应该包含值A;如果包含该值,则将 B放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可”。这其实和乐观锁的冲突检查 + 数据更新的原理是一样的。

JAVA对CAS的支持:

在JDK1.5中新增java.util.concurrent包就是建立在CAS之上的。相对于对于synchronized 这种阻塞算法,CAS是非阻塞算法的一种常见实现。所以java.util.concurrent在性能上有了很大的提升。

以java.util.concurrent包中的AtomicInteger为例,看一下在不使用锁的情况下是如何保证线程安全的。主要理解 getAndIncrement方法,该方法的作用相当于 ++i 操作。

public class AtomicInteger extends Number implements java.io.Serializable {  private volatile int value; public final int get() {  return value;  }  public final int getAndIncrement() {  for (;;) {  int current = get();  int next = current + 1;  if (compareAndSet(current, next))  return current;  }  }  public final boolean compareAndSet(int expect, int update) {  return unsafe.compareAndSwapInt(this, valueOffset, expect, update);  }  
}

2.实战

1.synchronized

synchronized可重入锁验证

//import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{//private ReentrantLock reentrantLock = new ReentrantLock();public synchronized void get(){System.out.println("2 enter thread name-->" + Thread.currentThread().getName());//reentrantLock.lock();System.out.println("3 get thread name-->" + Thread.currentThread().getName());set();//reentrantLock.unlock();System.out.println("5 leave run thread name-->" + Thread.currentThread().getName());}public synchronized void set(){//reentrantLock.lock();System.out.println("4 set thread name-->" + Thread.currentThread().getName());//reentrantLock.unlock();}@Overridepublic void run() {System.out.println("1 run thread name-->" + Thread.currentThread().getName());get();}public static void main(String[] args){Test test = new Test();for(int i = 0; i < 10; i++){new Thread(test, "thread-" + i).start();}}
}

运行结果

1 run thread name-->thread-0
1 run thread name-->thread-3
1 run thread name-->thread-2
1 run thread name-->thread-1
2 enter thread name-->thread-0
3 get thread name-->thread-0
1 run thread name-->thread-4
4 set thread name-->thread-0
5 leave run thread name-->thread-0
2 enter thread name-->thread-4
3 get thread name-->thread-4
1 run thread name-->thread-7
4 set thread name-->thread-4
1 run thread name-->thread-6
1 run thread name-->thread-5
5 leave run thread name-->thread-4
1 run thread name-->thread-8
1 run thread name-->thread-9
2 enter thread name-->thread-1
3 get thread name-->thread-1
4 set thread name-->thread-1
5 leave run thread name-->thread-1
2 enter thread name-->thread-2
3 get thread name-->thread-2
4 set thread name-->thread-2
5 leave run thread name-->thread-2
2 enter thread name-->thread-3
3 get thread name-->thread-3
4 set thread name-->thread-3
5 leave run thread name-->thread-3
2 enter thread name-->thread-9
3 get thread name-->thread-9
4 set thread name-->thread-9
5 leave run thread name-->thread-9
2 enter thread name-->thread-8
3 get thread name-->thread-8
4 set thread name-->thread-8
5 leave run thread name-->thread-8
2 enter thread name-->thread-5
3 get thread name-->thread-5
4 set thread name-->thread-5
5 leave run thread name-->thread-5
2 enter thread name-->thread-6
3 get thread name-->thread-6
4 set thread name-->thread-6
5 leave run thread name-->thread-6
2 enter thread name-->thread-7
3 get thread name-->thread-7
4 set thread name-->thread-7
5 leave run thread name-->thread-7

get()方法中顺利进入了set()方法,说明synchronized的确是可重入锁。分析打印Log,thread-0先进入get方法体,这个时候thread-3、thread-2、thread-1等待进入,但当thread-0离开时,thread-4却先进入了方法体,没有按照thread-3、thread-2、thread-1的顺序进入get方法体,说明sychronized的确是非公平锁。而且在一个线程进入get方法体后,其他线程只能等待,无法同时进入,验证了synchronized是独占锁。

2.ReentrantLock

ReentrantLock既可以构造公平锁又可以构造非公平锁,默认为非公平锁,将上面的代码改为用ReentrantLock实现,再次运行。

import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{private ReentrantLock reentrantLock = new ReentrantLock();public void get(){System.out.println("2 enter thread name-->" + Thread.currentThread().getName());reentrantLock.lock();System.out.println("3 get thread name-->" + Thread.currentThread().getName());set();reentrantLock.unlock();System.out.println("5 leave run thread name-->" + Thread.currentThread().getName());}public void set(){reentrantLock.lock();System.out.println("4 set thread name-->" + Thread.currentThread().getName());reentrantLock.unlock();}@Overridepublic void run() {System.out.println("1 run thread name-->" + Thread.currentThread().getName());get();}public static void main(String[] args){Test test = new Test();for(int i = 0; i < 10; i++){new Thread(test, "thread-" + i).start();}}
}

运行结果

1 run thread name-->thread-0
2 enter thread name-->thread-0
3 get thread name-->thread-0
4 set thread name-->thread-0
1 run thread name-->thread-1
2 enter thread name-->thread-1
1 run thread name-->thread-2
2 enter thread name-->thread-2
1 run thread name-->thread-3
2 enter thread name-->thread-3
5 leave run thread name-->thread-0
3 get thread name-->thread-2
4 set thread name-->thread-2
5 leave run thread name-->thread-2
3 get thread name-->thread-1
4 set thread name-->thread-1
5 leave run thread name-->thread-1
3 get thread name-->thread-3
4 set thread name-->thread-3
5 leave run thread name-->thread-3
1 run thread name-->thread-4
1 run thread name-->thread-5
2 enter thread name-->thread-5
3 get thread name-->thread-5
4 set thread name-->thread-5
5 leave run thread name-->thread-5
1 run thread name-->thread-6
2 enter thread name-->thread-6
3 get thread name-->thread-6
4 set thread name-->thread-6
5 leave run thread name-->thread-6
2 enter thread name-->thread-4
3 get thread name-->thread-4
4 set thread name-->thread-4
5 leave run thread name-->thread-4
1 run thread name-->thread-7
2 enter thread name-->thread-7
3 get thread name-->thread-7
4 set thread name-->thread-7
5 leave run thread name-->thread-7
1 run thread name-->thread-8
2 enter thread name-->thread-8
3 get thread name-->thread-8
4 set thread name-->thread-8
1 run thread name-->thread-9
2 enter thread name-->thread-9
3 get thread name-->thread-9
4 set thread name-->thread-9
5 leave run thread name-->thread-9
5 leave run thread name-->thread-8

的确如其名,可重入锁,当然默认的确是非公平锁。thread-0持有锁期间,thread-1、thread-2、thread-3等待拥有锁,当thread-0释放锁时thread-2先获取到锁,并非按照先后顺序获取锁的。

将其构造为公平锁,看看运行结果是否符合预期。查看源码构造公平锁很简单,只要在构造器传入boolean值true即可。

    /*** Creates an instance of {@code ReentrantLock} with the* given fairness policy.** @param fair {@code true} if this lock should use a fair ordering policy*/public ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();}

修改上面例程的代码构造方法为:

ReentrantLock reentrantLock = new ReentrantLock(true);

如果使用了IntelliJ IDEA IDE可以看到在true前面还有个fair提示。

import java.util.concurrent.locks.ReentrantLock;public class Test implements Runnable{private ReentrantLock reentrantLock = new ReentrantLock(true);public void get(){System.out.println("2 enter thread name-->" + Thread.currentThread().getName());reentrantLock.lock();System.out.println("3 get thread name-->" + Thread.currentThread().getName());set();reentrantLock.unlock();System.out.println("5 leave run thread name-->" + Thread.currentThread().getName());}public void set(){reentrantLock.lock();System.out.println("4 set thread name-->" + Thread.currentThread().getName());reentrantLock.unlock();}@Overridepublic void run() {System.out.println("1 run thread name-->" + Thread.currentThread().getName());get();}public static void main(String[] args){Test test = new Test();for(int i = 0; i < 10; i++){new Thread(test, "thread-" + i).start();}}
}

运行结果

1 run thread name-->thread-1
1 run thread name-->thread-0
2 enter thread name-->thread-0
3 get thread name-->thread-0
4 set thread name-->thread-0
1 run thread name-->thread-2
5 leave run thread name-->thread-0
2 enter thread name-->thread-1
3 get thread name-->thread-1
4 set thread name-->thread-1
2 enter thread name-->thread-2
1 run thread name-->thread-3
5 leave run thread name-->thread-1
2 enter thread name-->thread-3
3 get thread name-->thread-2
4 set thread name-->thread-2
1 run thread name-->thread-7
2 enter thread name-->thread-7
1 run thread name-->thread-5
5 leave run thread name-->thread-2
2 enter thread name-->thread-5
3 get thread name-->thread-3
4 set thread name-->thread-3
5 leave run thread name-->thread-3
3 get thread name-->thread-7
4 set thread name-->thread-7
5 leave run thread name-->thread-7
3 get thread name-->thread-5
4 set thread name-->thread-5
5 leave run thread name-->thread-5
1 run thread name-->thread-8
2 enter thread name-->thread-8
3 get thread name-->thread-8
1 run thread name-->thread-9
2 enter thread name-->thread-9
4 set thread name-->thread-8
3 get thread name-->thread-9
4 set thread name-->thread-9
5 leave run thread name-->thread-9
5 leave run thread name-->thread-8
1 run thread name-->thread-4
2 enter thread name-->thread-4
3 get thread name-->thread-4
4 set thread name-->thread-4
5 leave run thread name-->thread-4
1 run thread name-->thread-6
2 enter thread name-->thread-6
3 get thread name-->thread-6
4 set thread name-->thread-6
5 leave run thread name-->thread-6

公平锁在多个线程想要同时获取锁的时候,会发现再排队,按照先来后到的顺序进行。

3.ReentrantReadWriteLock

读写锁的性能都会比排它锁要好,因为大多数场景读是多于写的。在读多于写的情况下,读写锁能够提供比排它锁更好的并发性和吞吐量。Java并发包提供读写锁的实现是ReentrantReadWriteLock。

特性说明
公平性选择支持非公平(默认)和公平的锁获取方式,吞吐量还是非公平优于公平
重进入该锁支持重进入,以读写线程为例:读线程在获取了读锁之后,能够再次获取读锁。而写线程在获取了写锁之后能够再次获取写锁,同时也可以获取读锁
锁降级遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级成为读锁
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;public class Test {public static void main(String[] args){for(int i = 0; i < 10; i++){new Thread(new Runnable() {@Overridepublic void run() {Cache.put("key", new String(Thread.currentThread().getName() + " joke"));}}, "threadW-"+ i).start();new Thread(new Runnable() {@Overridepublic void run() {System.out.println(Cache.get("key"));}}, "threadR-"+ i).start();new Thread(new Runnable() {@Overridepublic void run() {Cache.clear();}}, "threadC-"+ i).start();}}
}class Cache {static Map<String, Object> map = new HashMap<String, Object>();static ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();static Lock r = rwl.readLock();static Lock w = rwl.writeLock();// 获取一个key对应的valuepublic static final Object get(String key) {r.lock();try {System.out.println("get " + Thread.currentThread().getName());return map.get(key);} finally {r.unlock();}}// 设置key对应的value,并返回旧有的valuepublic static final Object put(String key, Object value) {w.lock();try {System.out.println("put " + Thread.currentThread().getName());return map.put(key, value);} finally {w.unlock();}}// 清空所有的内容public static final void clear() {w.lock();try {System.out.println("clear " + Thread.currentThread().getName());map.clear();} finally {w.unlock();}}
}

运行结果

clear threadC-0
get threadR-2
null
put threadW-2
get threadR-0
threadW-2 joke
get threadR-3
threadW-2 joke
clear threadC-1
put threadW-3
clear threadC-3
clear threadC-2
get threadR-1
null
put threadW-1
put threadW-0
put threadW-4
get threadR-4
threadW-4 joke
clear threadC-4
get threadR-5
null
put threadW-5
put threadW-6
get threadR-6
threadW-6 joke
get threadR-7
threadW-6 joke
put threadW-7
clear threadC-6
put threadW-8
get threadR-8
threadW-8 joke
clear threadC-8
get threadR-9
null
clear threadC-5
clear threadC-9
clear threadC-7
put threadW-9

可看到普通HashMap在多线程中数据可见性正常。

参考资料

1.http://ifeve.com/java-art-reentrantlock/


http://chatgpt.dhexx.cn/article/L6U9er0x.shtml

相关文章

java多线程的15种锁

1 java锁分类 下面我们依照序号依次的介绍每一种锁 2 悲观锁和乐观锁 悲观锁和乐观锁是一种广义的概念&#xff0c;体现的是看待线程同步的不同的角度 悲观锁认为自己在使用数据的时候&#xff0c;一定有别的线程来修改数据&#xff0c;在获取数据的时候会先加锁&#xff0c…

Java多线程 - 锁

Java多线程 - 锁 三性 可见性 指的是线程之间的可见性&#xff0c;一个线程对状态的修改&#xff0c;对其他线程是可见的。在 Java中 volatile、synchronized 和 final 实现可见性。 原子性 如果一个操作是不可分割的&#xff0c;我们则称之为原子操作&#xff0c;也就是有原…

Java多线程与锁

前文中&#xff0c;我们已经了解了什么是线程&#xff0c;线程间常用通信方式&#xff0c;线程池以及其相关特性&#xff0c;可以看出锁在多线程环境中充当着重要作用&#xff0c;不管是线程间的数据通信&#xff0c;还是线程间的等待和唤醒&#xff0c;都依赖于锁&#xff0c;…

JAVA基础-多线程中锁机制

多线程锁 多线程锁机制锁的定义锁的分类公平锁/非公平锁可重入锁独享锁/共享锁互斥锁/读写锁乐观锁/悲观锁分段锁偏向锁/轻量级锁/重量级锁自旋锁 锁的使用AQSAQS框架展示AQS定义两种资源共享方式AQS常用的几种方法&#xff08;自定义同步器实现时&#xff09;自定义同步器实现…

多线程系列-Java中的锁(简介)

前言 Java提供了种类丰富的锁&#xff0c;每种锁因其特性的不同&#xff0c;在适当的场景下能够展现出非常高的效率。本文旨在对锁相关源码&#xff08;本文中的源码来自JDK 8和Netty 3.10.6&#xff09;、使用场景进行举例&#xff0c;为读者介绍主流锁的知识点&#xff0c;以…

JAVA如何在线程中加锁(四种方法)

JAVA多线程锁 线程的生命周期 ​ 总共六种状态&#xff0c;可归结为五种&#xff0c;线程的最终是死亡&#xff0c;阻塞不是最终状态&#xff0c;只是一个临时状态。只有调用了start方法&#xff0c;线程才进入就绪阶段。 //新生 ​ NEW, //运行​ RUNNABLE, //阻塞​ BLOCKE…

大数据平台_大数据应用场景有哪些

大数据时代的出现&#xff0c;简单的讲是海量数据同完美计算能力结合的结果&#xff0c;确切的说是移动互联网、物联网产生了海量的数据&#xff0c;大数据计算技术完美地解决了海量数据的收集、存储、计算、分析的问题。一些公司也成立了大数据部门&#xff0c;大数据得到了企…

银行业9大数据科学应用案例

在银行业中使用数据科学不仅仅是一种趋势,它已成为保持竞争的必要条件。 银行必须认识到, 大数据技术可以帮助他们有效地集中资源,做出更明智的决策并提高绩效。 以下我们罗列银行业使用的数据科学用例清单, 让您了解如何处理大量数据以及如何有效使用数据。 [TOC] 1 欺诈识…

某银行大数据体系架构设计与演进

近年来&#xff0c;随着大数据与人工智能相关技术的迅速发展&#xff0c;新技术逐步在全社会各行各业得到应用。银行业作为一个高度信息化的行业&#xff0c;首当其冲面临着互联网新技术应用的挑战。民生银行在 2013 年开始布局分布式、大数据及人工智能技术等领域&#xff0c;…

图解大数据 | 大数据生态与应用导论

作者&#xff1a;韩信子[ShowMeAI](https://www.showmeai.tech 教程地址&#xff1a;https://www.showmeai.tech/tutorials/84 本文地址&#xff1a;https://www.showmeai.tech/article-detail/167 声明&#xff1a;版权所有&#xff0c;转载请联系平台与作者并注明出处 收藏S…

大数据应用于生活,目前主要应用在哪些领域?

如果提到“大数据”时&#xff0c;你会想到什么?也许大部分人会联想到庞大的服务器集群;或者联想到销售商提供的一些个性化的推荐和建议。 如今大数据的深度和广度远不止这些&#xff0c;大数据已经在人类社会实践中发挥着巨大的优势&#xff0c;其利用价值也超出我们的想像。…

大数据应用管理模式及内容

通过调研&#xff0c;数据应用管理可总结为分散管理型、职能复用型、集中管理型三种模式&#xff0c;数据应用管理模式中重点关注组织管理、需求管理、建设管理、成果管理四大领域。 &#xff08;1&#xff09; 管理模式 分散管理型&#xff1a;各部门分散开展数据应用&#xf…

大数据应用于各个行业,大数据在各行各业的具体应用是什么?

大数据无处不在&#xff0c;大数据应用于各个行业&#xff0c;包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹&#xff0c;下面详细介绍一下大数据在各行各业的具体应用。      制造业&#xff0c;利用工业大数据提升制造业水…

大数据应用的重要性体现在方方面面

大数据应用的重要性&#xff0c;自全国提出“数据中国”的概念以来&#xff0c;我们周围默默地在发挥作用的大数据逐渐深入人们的心中&#xff0c;大数据的应用也越来越广泛&#xff0c;具体到金融、汽车、餐饮、电信、能源、体育和娱乐等领域&#xff0c;下面就通过本文&#…

4大案例分析金融机构的大数据应用

就“大数据金融”思维利用而言&#xff0c;国外金融机构有着十足丰富的体现&#xff0c;已经将大数据技术在风险控制、运营管理、销售支持及商业模式创新等领域进行了全面的尝试。 案例一&#xff1a;汇丰银行-风险管理 汇丰银行在防范信用卡和借记卡欺诈的基础上&#xff0c;利…

金融业大数据应用场景

如果能够引入外部数据&#xff0c;还可以进一步加快数据价值的变现。外部数据中比较好的有社交数据、电商交易数据、移动大数据、运营商数据、工商司法数据、公安数据、教育数据和银联交易数据等。 大数据在金融行业的应用范围较广&#xff0c;典型的案例有花旗银行利用 IBM 沃…

【行业|分析】大数据对于银行七大应用

如今,Hadoop几乎存在于各个方面,其通过利用大数据来分析信息和增加竞争力。许多金融机构和公司已经开始使用Hadoop成功地解决问题,即便他们本没有计划这样做。因为如果他们不这样做,就会面临市场份额损失的巨大风险。以下是一些特别有趣且重要的大数据和Hadoop用例。 诈骗侦…

银行大数据风控平台的建设要点与应用

金融行业是经营风险的行业&#xff0c;风险控制能力是金融机构的核心竞争力。通常而言&#xff0c;金融机构一般是通过给客户的信用状况评分来计量贷款违约的可能性&#xff0c;并通过客户的风险水平进行利率定价。 而传统的信用测算主要是利用历史借贷数据和财务数据对借款人的…

浅谈大数据如何应用?

大数据所面临的五大问题中最后一个是大数据应用&#xff0c;也是大数据问题的具象和最终展现形式。如果用更高度的概括来表述大数据的生命周期&#xff0c;可以归纳为&#xff1a;大数据来源大数据技术大数据应用。三者缺一不可、彼此相承&#xff0c;见下图&#xff1a; ** …

银行大数据风控管理针对哪些应用场景?

银行是经营风险的企业&#xff0c;在风险识别、衡量、定价和防范等方面的能力水平&#xff0c;是判断银行是否具备核心竞争力的关键。随着社会信息化、数字化体系建设&#xff0c;银行风险管理也必将迎来“数智化”时代。 其实&#xff0c;银行业务的申请、交易、营销等环节都…