YOLO - v1

article/2025/8/23 13:26:03

先理解预测阶段:

1)一个448*448*3的图像经过YOLO这个黑箱输出一个7*7*30矩阵;

2)7*7*30的矩阵中的30维是5+5+20;5是预测的bbox的x,y,w,c;20是20个类别的条件概率;

解释c:

 解释条件概率:它的意义是当bounding box认为当前box中有对象时,要检测的所有类别中每种类别的概率.

3)对于每一个1*1*30中第一个c乘20维的条件概率,得到20个类别的全概率;每一个1*1*30的向量能得到2个20类别的全概率;49个grid cell 就能得到98个20维的向量;

 4)后处理阶段:像上面一样98个长条排成20*98的矩阵;先把第一行(这一行就代表某一个类别在98个bbox预测的概率)的拿出来;先对小于一个阈值的概率置为0,然后进行NMS极大值抑制;

解释NMS过程;先对这一个长条排序;把最大的一个拿出来和其余的比较(这两个概率一定是属于不同的bbox)他们所属bbox的IOU,如果IOU大于一定的阈值,就认为这两个bbox预测了一个物体,就把概率小的那个置为0;依次比较;

训练阶段:

1)每一个gird cell随机生成两个bbox,如果有真实标记的框落在这个grid cell中,这个gird cell的两个bbox与真实标记的框的IOU大,就用那个框去预测,另一个就被‘打入冷宫’。如果没有真实的gird cell 落在这个grid cell里,这个gird cell预测的两个bbox都会被‘打入冷宫’。

2)拟合损失函数,把目标检测转化为回归问题,让预测的值和标注值越接近越好。

 解释损失函数:1.第二项使用根号的原因:对不同大小的bounding box预测中,相比于大bounding box预测偏一点可以接受,小bbox预测偏一点更不能忍受,因此小的bbox的损矢应该更敏感。因此对于y=根号x函数,x比较小的时候导数比较敏感,x比较大的时候不敏感。


http://chatgpt.dhexx.cn/article/GlN5wja3.shtml

相关文章

YOLOV2网络模型

目录 资料 网络模型原理 网络框架 相对于yoloV1的改进 Batch Norm High Resolution Classifier Convolutional With Anchor Boxes Dimension Clusters New Network:Darknet-19 Direct location prediction PassThrough Multi-Scale Training Loss YOLOV2的训…

YOLOv3

YOLOv3 论文信息论文标题:论文作者:收录期刊/会议及年份: 论文学习YOLOv3 网络架构:YOLO 输出特征图解码(前向过程):训练策略与损失函数(反向过程):精度与性能…

从YOLO到YOLO v2再到YOLO v3

配置相关博客链接: YOLO V3-GPU版本在Windows配置及注意事项 YOLO v3在Windows下的配置(无GPU)opencv3.2.0VS2015 前不久YOLO v3出来了,就迫不及待的想试一下。以前装过darknet所以我把整个darknet的文件夹全部删掉。 然后按照…

yolovx

1.输入端 (1)Strong augmentation Yolox主要采用了Mosaic、Mixup两种数据增强方法 有两点需要注意: (1)在训练的最后15个epoch,这两个数据增强会被关闭掉。 而在此之前,Mosaic和Mixup数据增…

史上最通俗易懂的YOLOv2讲解

博主本来想自己写一篇关于YOLOv2的论文笔记的,在找资料的过程中看到这篇天秀的博客,就“据为己用”了。不得不出,很多大佬写的都太深刻了,还是转载比较舒服点~~~~~~ 本文转自目标检测|YOLOv2原理与实现(附YOLOv3) 前 言 在前面的…

【目标检测】YOLOV2详解

前言 前面我们已经讲解过了YOLOV1,因此在这里我会接着前几天的讲解,进一步写一下YOLOV2的基本思想和改进。 YOLOv2的论文全名为YOLO9000: Better, Faster, Stronger,它斩获了CVPR 2017 Best Paper Honorable Mention。在这篇文章中&#xf…

YOLOv2目标检测算法——通俗易懂的解析

目录 YOLOv2目标检测算法前沿一.YOLOv2的改进1.1.BN1.2.High Resolution Classifier1.3.anchor1.4.Fine-Grained Features(细粒度特征)1.5.Multi-Scale Training 二.损失函数三.检测更多类别 YOLOv2目标检测算法 前沿 前面我们讲过了YOLOv1目标检测算法,不了解的小…

YOLOP v2

还是先道歉啊 就是自学求知 又一个自称更好的!! 网上找到的就发了 不知道 大伙用的怎么样啊 更好、更快、更强 ... YOLOv7结合YOLOP的多任务版本 论文链接:https://arxiv.org/pdf/2208.11434v1.pdf 代码链接:https://github.com/CAIC-AD/YOLOPv2 在…

YOLO系列(V1-V2-V3)

yolo系列整理 版本作者主页程序论文yoloV1点击打开点击打开点击打开yoloV2点击打开点击打开点击打开yoloV3点击打开点击打开点击打开 改进 V2 VS V1: 增加BN层: 解决问题:每层的输入分布一直在改变,训练难度增加;采取措施&am…

YOLO_v2讲解

文章目录 一:YOLO_v2的改进二:网络细节【BN层取代了Dropout】【高分辨率分类器】【Anchor思想】【K-means选定先验框】【预测坐标相对于Grid Cell的位置】【细粒度的特征】【多尺度训练】 三:损失函数四:YOLO_v2的不足 一&#xf…

YOLOV2原理理解

YOLOV2 一、YOLOV1的不足之处二、YOLOV2的改进论文精读AbstractIntroductionBetter(重点笔记)FasterStronger(非重点) 三、YOLOV2网络的输出输出结果解释输出图示 四、YOLOV2的LOSS函数五、Kmeans聚类——anchor box六、YOLOV2算法总结七、关于YOLOV2中a…

【目标检测】单阶段算法--YOLOv2详解

论文题目:《YOLO9000: Better, Faster, Stronger》 论文地址:https://arxiv.org/pdf/1612.08242.pdf 一文读懂YOLOv1:YOLOv1 一文读懂YOLOv3:YOLOv3 一文读懂YOLOv4:YOLOv4 1. 前言 在前面的一篇文章中,我…

yolov2详细讲解

yolov2详细讲解 概述 YOLO v1虽然检测速度快,但在定位方面不够准确,并且召回率较低。为了提升定位准确度,改善召回率,yolov2在yolov1的基础上提出了几种改进策略,如下图所示,一些改进方法能有效提高模型的…

YOLO V2解析

YOLO V2是YOLO系列的第二版,在YOLO V1的基础上加以改进,改善了YOLO V1定位不准的问题,又保证了检测的速度,可谓集准确性与速度于一身(YOLO V2获得了CVPR2017的最佳论文提名)。YOLO V2的原文提出了两个模型:YOLO V2和YOLO9000,本文主要着重YOLO V2,下面让我们一同走进Y…

YOLOV2详解

yolov2 YOLOv2论文中英文对照翻译_IT修炼家的博客-CSDN博客 YOLOv2 论文笔记Jesse_Mx的博客-CSDN博客yolov2论文 精读目标检测5——yolo2详解及其预测代码复现cv君的博客-CSDN博客yolo2 目标检测|YOLOv2原理与实现(附YOLOv3) - 知乎 (zhihu.com) YOLO v2 - ZhicongHou - 博客园…

YOLO 超详细入门02 v2 (含代码及原文)

文章目录 前言背景总结一、YOLOv2改进之框架1.1 网络架构1.2 Batch Normalization 二、YOLOv2改进方法之尺寸相关2.1 High Resolution Classifier(高分辨率的分类器)原因步骤 2.2 Fine-Grained Features(细粒度特征)原因步骤 2.3 …

深度学习目标检测_YOLOV2超详细解读

文章目录 YOLO v2概述Batch Normalization(批归一化)High Resolution Classifier(高分辨率预训练分类网络)New Network:Darknet-19神经网络中的filter (滤波器)与kernel(内核&#x…

【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)

前言 时隔一年,YOLOv2隆重登场,新的YOLO版本论文叫《YOLO9000: Better, Faster, Stronger》,作者 Joseph Redmon 和 Ali Farhadi 在 YOLOv1 的基础上,进行了大量改进,提出了 YOLOv2 和 YOLO9000,重点解决Y…

训练Doc2Vec

将文本数据表示成list of list的形式: 对每一条文本进行分词操作,可能的话,去除停用词,加上自定义词等: 将分词后的文本转换为gensim所需要的形式: 训练Doc2Vec,其中参数dm1表示DM模型&#…

Doc2vec计算文本相似度

1.Doc2vec模型介绍 Doc2Vec模型基于Word2vec模型,并在其基础上增加了一个段落向量。 以Doc2Vec的C-BOW方法为例。算法的主要思想在以下两个方面: 训练过程中新增了paragraph id,即训练语料中每个句子都有一个唯一的id。paragraph id和普通的…