python遗传算法之geatpy学习

article/2025/10/2 0:08:25

😻今天我们来学习python中的遗传算法的使用,我们这里使用的是geatpy的包进行学习,本博客主要从geatpy中的各种数据结构一步一步进行学习,请大家耐心看完。

🐤其实以前也学习过遗传算法,但是主要使用matlab进行编程的,后面觉得matlab太麻烦了,还是使用python方便些,于是开始继续学习。

目录

  • 1. geatpy的安装
  • 2. geatpy的基础数据结构
    • 2.1 种群染色体
    • 2.2 种群表现型
    • 2.3 目标函数值
    • 2.4 个体适应度
    • 2.5 违反约束程度矩阵
    • 2.6 译码矩阵
    • 2.7 进化追踪器
  • 3. geatpy的种群结构
    • 3.1 Population类
    • 3.2 PsyPopulation类
  • 4. 求解标准测试函数——McCormick函数
  • 5.参考文章

1. geatpy的安装

首先是安装geatpy,使用pip3命令进行安装即可:

pip3 install geatpy

出现如下提示即安装成功:
在这里插入图片描述

2. geatpy的基础数据结构

geatpy中的大部分数据都是都是使用numpy的数组进行存储和计算的,下面我将介绍遗传算法中的概念是如何用numpy数据表示,以及行和列的含义。

2.1 种群染色体

遗传算法中最重要的就是个体的染色体表示,在geatpy中种群染色体用Chrom表示,这是一个二维数组,其中每一行对应一个个体的染色体编码,Chrom的结构如下:其中lind表示编码的长度,Nind表示的是种群的规模(个体数量)。
在这里插入图片描述

2.2 种群表现型

种群表现型是是指种群染色体矩阵Chrom经过解码后得到的基因表现型矩阵Phen,每一行对应一个个体,每一列对应一个决策变量,Phen的结构如下:其中Nvar表示变量的个数
在这里插入图片描述
Phen的值与采用的解码方式有关。Geatpy提供二进制/格雷码编码转十进制整数或实数的解码方式。另外,在Geatpy也可以使用不需要解码的“实值编码”种群,这种种群的染色体的每一位就对应着决策变量的实际值,即这种编码方式下Phen等价Chrom。

2.3 目标函数值

Geatpy采用numpy的array类型矩阵来存储种群的目标函数值。一般命名为ObjV,每一行对应每一个个体,因此它拥有与Chrom相同的行数;每一列对应一个目标函数,因此对于单目标函数,ObjV会只有1列;而对于多目标函数,ObjV会有多列, ObjV的表示形式如下:
在这里插入图片描述

2.4 个体适应度

Geatpy采用列向量来存储种群个体适应度(适应度函数计算而来)。一般命名为FitnV,它同样是numpy的array类型,每一行对应种群矩阵的每一个个体。因此它拥有与Chrom相同的行数,FitnV的格式如下:
在这里插入图片描述
注意:Geatpy中的适应度遵循“最小适应度为0”的约定。

2.5 违反约束程度矩阵

Geatpy采用numpy的array类型的矩阵CV(Constraint Violation Value)来存储种群个体违反各个约束条件的程度。命名为CV,它的每一行对应种群的每一个个体,因此它拥有与Chrom相同的行数;每一列对应一个约束条件,因此若有一个约束条件,那么CV矩阵就会只有一列,如有多个约束条件,CV矩阵就会有多列。如果设有num个约束,则CV矩阵的结构如下图所示:
在这里插入图片描述
CV矩阵的某个元素若小于或等于0,则表示该元素对应的个体满足对应的约束条件。若大于0,则表示违反约束条件,在大于0的条件下值越大,该个体违反该约束的程度就越高。Geatpy提供两种处理约束条件的方法,一种是罚函数法,另一种是可行性法则。在使用可行性法则处理约束条件时,需要用到CV矩阵。

2.6 译码矩阵

所谓的译码矩阵,只是用来描述种群染色体特征的矩阵,如染色体中的每一位元素所表达的决策变量的范围、是否包含范围的边界、采用二进制还是格雷码、是否使用对数刻度、染色体解码后所代表的决策变量的是连续型变量还是离散型变量等等。

在只使用工具箱的库函数而不使用Geatpy提供的面向对象的进化算法框架时,译码矩阵可以单独使用。若采用Geatpy提供的面向对象的进化算法框架时,译码矩阵可以与一个存储着种群染色体编码方式的字符串Encoding来配合使用。

目前Geatpy中有三种Encoding,分别为:

  • BG:(二进制/格雷码)
  • RI:((实整数编码,即实数和整数的混合编码)
  • P:(排列编码,即染色体每一位的元素都是互异)

注:’RI’和’P’编码的染色体都不需要解码,染色体上的每一位本身就代表着决策变量的真实值,因此“实整数编码”和“排列编码”可统称为“实值编码”

以BG编码为例,我们展示一下编译矩阵FieldD。FieldD的结构如下:
在这里插入图片描述
其中,lens,lb,ub,codes,scales,lbin,ubin,varTypes都是行向量,其长度等于决策变量的个数。

  • lens:代表以条染色体中,每个子染色体的长度。
  • lb:代表每个变量的上界
  • ub:代表每个变量的下界
  • codes:代表染色体字串用的编码方式,[1,0,1]代表第一个变量用的格雷编码,第二个变量用的二进制编码,第3个变量用的格雷编码。
  • scales:指明每个子串用的是算术刻度还是对数刻度。scales[i] = 0为算术刻度,scales[i] = 1为对数刻度(对数刻度很少用,可以忽略。)
  • lbin:代表变量上界是否包含其范围边界。0代表不包含,1代表包含。‘[ ’和 ‘(’ 的区别
  • ubin:代表变量下界是否包含其范围边界。0代表不包含,1代表包含。
  • varTypes:代表决策变量的类型,元素为0表示对应位置的决策变量是连续型变量;1表示对应的是离散型变量。

例如:有以下一个译码矩阵
在这里插入图片描述
它表示待解码的种群染色体矩阵Chrom解码后可以表示成3个决策变量,每个决策变量的取值范围分别是[1,10], [2,9], [3,15]。其中第一第二个变量采用的是二进制编码,第三个变量采用的是格雷编码,且第一、第三个决策变量为连续型变量;第二个为离散型变量。

#通过种群染色体chrom和译码矩阵FieldD,可解码成种群表现型矩阵。
import geatpy as ea
Phen = ea.bs2ri(Chrom, FieldD)

2.7 进化追踪器

在使用Geatpy进行进化算法编程时,常常建立一个进化追踪器(如pop_trace)来记录种群在进化的过程中各代的最优个体,尤其是采用无精英保留机制时,进化追踪器帮助我们记录种群在进化过程中的最优个体。待进化完成后,再从进化追踪器中挑选出“历史最优”的个体。这种进化记录器有多种,其中一种是numpy的array类型的,结构如下:其中MAXGEN是种群进化的代数(迭代次数)。
在这里插入图片描述
trace的每一列代表不同的指标,比如第一列记录各代种群的最佳目标函数值,第二列记录各代种群的平均目标函数值…trace的每一行对应每一代,如第一行代表第一代,第二行代表第二代…另外一种进化记录器是一个列表,列表中的每一个元素都是一个拥有相同数据类型的数据。比如在Geatpy的面向对象进化算法框架中的pop_trace,它是一个列表,列表中的每一个元素都是历代的种群对象。

3. geatpy的种群结构

3.1 Population类

在Geatpy提供的面向对象进化算法框架中,种群类(Population)是一个存储着与种群个体相关信息的类。它有以下基本属性:

  • sizes : int -种群规模,即种群的个体数目。
  • ChromNum : int -染色体的数目,即每个个体有多少条染色体。
  • Encoding : str -染色体编码方式。
  • Field : array -译码矩阵,可以是FieldD或FieldDR。
  • Chrom : array -种群染色体矩阵,每一行对应一个个体的一条染色体。
  • Lind : int -种群染色体长度。
  • ObjV : array -种群目标函数值矩阵。
  • FitnV : array -种群个体适应度列向量。
  • CV : array -种群个体违反约束条件程度的矩阵。
  • Phen : array -种群表现型矩阵。

可以直接对种群对象进行提取个体、个体合并等操作,比如pop1和pop2是两个种群对象,则通过语句“pop3 = pop1 + pop2”,即可把两个种群的个体合并,得到一个新的种群。在合并的过程中,实际上是把种群的各个属性进行合并,然后用合并的数据来生成一个新的种群(详见Population.py)。又比如执行语句“pop3 = pop1[[0]]”,可以把种群的第0号个体抽取出来,得到一个新的只有一个个体的种群对象pop3。值得注意的是,种群的这种个体抽取操作要求下标必须为列表或是Numpy array类型的行向量,不能是标量(详见Population.py)

3.2 PsyPopulation类

PsyPopulation类是Population的子类,它提供Population类所不支持的多染色体混合编码。它有以下基本属性:

  • sizes : int -种群规模,即种群的个体数目。
  • ChromNum : int -染色体的数目,即每个个体有多少条染色体。
  • Encodings : list -存储各染色体编码方式的列表。
  • Fields : list -存储各染色体对应的译码矩阵的列表。
  • Chroms : list -存储种群各染色体矩阵的列表。
  • Linds : list -存储种群各染色体长度的列表。
  • ObjV : array -种群目标函数值矩阵。
  • FitnV : array -种群个体适应度列向量。
  • CV : array -种群个体违反约束条件程度的矩阵。
  • Phen : array -种群表现型矩阵。

可见PsyPopulation类基本与Population类一样,不同之处是采用Linds、Encodings、Fields和Chroms分别存储多个Lind、Encoding、Field和Chrom。

PsyPopulation类的对象往往与带“psy”字样的进化算法模板配合使用,以实现多染色体混合编码的进化优化。

4. 求解标准测试函数——McCormick函数

遗传算法求解以下函数的最小值: m i n f ( x , y ) = s i n ( x + y ) + ( x − y ) 2 − 1.5 x + 2.5 y + 1 minf(x, y) =sin(x+y) + (x−y)2−1.5x+ 2.5y+ 1 minf(x,y)=sin(x+y)+(xy)21.5x+2.5y+1

代码实现:

#-*-coding:utf-8-*-
import numpy as np
import geatpy as ea#导入geatpy库
import time
"""============================目标函数============================"""
def aim(Phen):#传入种群染色体矩阵解码后的基因表现型矩阵x1 = Phen[:, [0]]#取出第一列,得到所有个体的第一个自变量x2 = Phen[:, [1]]#取出第二列,得到所有个体的第二个自变量return np.sin(x1 + x2) + (x1 - x2) ** 2 - 1.5 * x1 + 2.5 * x2+1
"""============================变量设置============================"""
x1 = [-1.5, 4]#第一个决策变量范围
x2 = [-3, 4]#第二个决策变量范围
b1 = [1, 1]#第一个决策变量边界,1表示包含范围的边界,0表示不包含
b2 = [1, 1]#第二个决策变量边界,1表示包含范围的边界,0表示不包含
#生成自变量的范围矩阵,使得第一行为所有决策变量的下界,第二行为上界
ranges=np.vstack([x1, x2]).T
#生成自变量的边界矩阵
borders=np.vstack([b1, b2]).T
varTypes = np.array([0, 0])#决策变量的类型,0表示连续,1表示离散
"""==========================染色体编码设置========================="""
Encoding ='BG'#'BG'表示采用二进制/格雷编码
codes = [1, 1]#决策变量的编码方式,两个1表示变量均使用格雷编码
precisions =[6, 6]#决策变量的编码精度,表示解码后能表示的决策变量的精度可达到小数点后6位
scales = [0, 0]#0表示采用算术刻度,1表示采用对数刻度#调用函数创建译码矩阵
FieldD =ea.crtfld(Encoding,varTypes,ranges,borders,precisions,codes,scales)"""=========================遗传算法参数设置========================"""
NIND     = 20#种群个体数目
MAXGEN   = 100#最大遗传代数
maxormins = np.array([1])#表示目标函数是最小化,元素为-1则表示对应的目标函数是最大化
selectStyle ='sus'#采用随机抽样选择
recStyle ='xovdp'#采用两点交叉
mutStyle ='mutbin'#采用二进制染色体的变异算子
Lind =int(np.sum(FieldD[0, :]))#计算染色体长度
pc= 0.9#交叉概率
pm= 1/Lind#变异概率
obj_trace = np.zeros((MAXGEN, 2))#定义目标函数值记录器
var_trace = np.zeros((MAXGEN, Lind))#染色体记录器,记录历代最优个体的染色体"""=========================开始遗传算法进化========================"""
start_time = time.time()#开始计时
Chrom = ea.crtpc(Encoding,NIND, FieldD)#生成种群染色体矩阵
variable = ea.bs2ri(Chrom, FieldD)#对初始种群进行解码
ObjV = aim(variable)#计算初始种群个体的目标函数值
best_ind = np.argmin(ObjV)#计算当代最优个体的序号#开始进化
for gen in range(MAXGEN):FitnV = ea.ranking(maxormins * ObjV)#根据目标函数大小分配适应度值SelCh = Chrom[ea.selecting(selectStyle,FitnV,NIND-1),:]#选择SelCh = ea.recombin(recStyle, SelCh, pc)#重组SelCh = ea.mutate(mutStyle, Encoding, SelCh, pm)#变异# #把父代精英个体与子代的染色体进行合并,得到新一代种群Chrom = np.vstack([Chrom[best_ind, :], SelCh])Phen = ea.bs2ri(Chrom, FieldD)#对种群进行解码(二进制转十进制)ObjV = aim(Phen)#求种群个体的目标函数值#记录best_ind = np.argmin(ObjV)#计算当代最优个体的序号obj_trace[gen,0]=np.sum(ObjV)/ObjV.shape[0]#记录当代种群的目标函数均值obj_trace[gen,1]=ObjV[best_ind]#记录当代种群最优个体目标函数值var_trace[gen,:]=Chrom[best_ind,:]#记录当代种群最优个体的染色体# 进化完成end_time = time.time()#结束计时ea.trcplot(obj_trace, [['种群个体平均目标函数值','种群最优个体目标函数值']])#绘制图像"""============================输出结果============================"""
best_gen = np.argmin(obj_trace[:, [1]])
print('最优解的目标函数值:', obj_trace[best_gen, 1])
variable = ea.bs2ri(var_trace[[best_gen], :], FieldD)#解码得到表现型(即对应的决策变量值)
print('最优解的决策变量值为:')
for i in range(variable.shape[1]):print('x'+str(i)+'=',variable[0, i])print('用时:', end_time - start_time,'秒')

效果图:
在这里插入图片描述
结果如下:
在这里插入图片描述

5.参考文章

链接: geatpy说明文档.


http://chatgpt.dhexx.cn/article/GFQrcXR0.shtml

相关文章

遗传算法详解 附python代码实现

遗传算法 遗传算法是用于解决最优化问题的一种搜索算法。从名字来看,遗传算法借用了生物学里达尔文的进化理论:”适者生存,不适者淘汰“,将该理论以算法的形式表现出来就是遗传算法的过程。 问题引入 上面提到遗传算法是用来解…

遗传算法【Python】

遗传算法概念 基本思想: 遗传算法(GA)是一种全局寻优搜索算法,它依据的是大自然生物进化过程中“适者生存”的规律。它首先对问题的可行解进行编码,组成染色体,然后通过模拟自然界的进化过程,对初始种群中的染色体进…

遗传算法python实现

遗传算法python实现 一、问题引入二、遗传算法的步骤1.初始化2.个体评价3.选择运算4.交叉运算5.变异运算6.终止条件判断 三、实现思路1.编码的设计2.适应度函数3.选择函数4.交叉函数5.变异函数6.迭代 四、具体实现1.编码解码函数2.适应度函数3.选择函数4.交叉函数5.变异函数6.选…

遗传算法(Python)

一、遗传算法 1、遗传算法的定义 遗传算法是一种现代优化算法。根据自然界适者生存的法则,种群中优秀个体的基因进行遗传。每个个体的染色体通过选择、交叉和变异等过程产生新的适应度更大的染色体,其中适应度越大的个体越优秀,种群得到优化…

python遗传算法(详解)

学习代码来源于:遗传算法python 一.主要思想 遗传算法是根据达尔文的“适者生存,优胜劣汰”的思想来找到最优解的额,其特点是所找到的解是全局最优解,相对于蚁群算法可能出现的局部最优解还是有优势的。 二.主要名词 个体&…

DH算法、DHE算法、ECDHE算法演进

ECDHE 算法解决了 RSA 算法不具备前向安全的性质 和 DH 算法效率低下的问题。 ECDHE 算法具有前向安全。所以被广泛使用。 由什么演变而来 DH 算法 -- > DHE 算法 -- > ECDHE 算法 DH 算法是非对称加密算法,该算法的核心数学思想是离散对数。 核心数学思…

DH 算法思想 SSH解决内容篡改问题

DH算法用于交换密钥 交换密钥的目的是生成仅双方共享的密钥 交换密钥的基本过程: 双方确定公开的内容用各自的私钥分别对公共内容加密(加密本质就是数学运算)并发送给对方这时双方使用自己的密钥对收到的内容加密(要设计运算保证…

ECDH算法详解

ECDH算法详解 ECDH算法详解DH密钥交换原理结合ECC椭圆曲线算法ECDSA签名算法 参考资料 ECDH算法详解 DH密钥交换原理 进一步解释: 两端(Alice 和 Bob)想要安全的交换信息并且第三方不能获取到该信息。当然这也是TLS协议中的目的之一&#xf…

DH算法(密钥交换算法)

一 对称加密缺点 密钥传递过程复杂,这是对称加密带来的困扰。 二 DH密钥交换算法特点 构建本地密钥 双方密钥一致 三 DH相关参数 四 DH算法实现过程 1、初始化发送方的密钥(KeyPairGenerator、KeyPair、PublicKey) 2、初始化接受方的密钥&…

SSL/TLS中的DH算法、DHE算法、 ECDHE算法介绍

❤️SSL/TLS专栏导航页❤️ 文章目录 1. DH算法简介2. DH算法协商流程3. DH算法证明4. SSL/TLS中的DH算法 1. DH算法简介 Diffie-Hellman密钥交换算法是在1976年由这两个人发明的算法。它可以在不安全的网络中,通过交换一些公开的信息协商出共享密钥,使…

一文读懂DH密钥交换算法

DH 算法是 Diffie和Hellman于1976年提出了一种的密钥交换协议。这种加密算法主要用于密钥的交换,可以在非安全信道下为双方创建通信密钥,通讯双方可以使用这个密钥进行消息的加密、解密,并且能够保证通讯的安全。 换而言之,算法希…

密钥协商算法的演变 —— RSA算法 - DH算法 - DHE算法 - ECDHE算法

文章目录 1. RSA算法RSA握手过程RSA秘钥协商算法最大的缺陷 2. DH算法3. DHE算法4. ECDHE算法ECDHE秘钥协商算法的TSL握手: 1. RSA算法 传统的 TLS 握⼿基本都是使⽤ RSA 算法来实现密钥交换的。在 RSA 密钥协商算法中,客户端会⽣成随机密钥&#xff0c…

openswan中DH算法说明

Author :Email : vip_13031075266163.comDate : 2021.01.11Copyright : 未经同意不得转载!!!Version : openswan-2.6.51.5Reference:https://download.openswan.org/openswan/ 目录 1. ope…

DH法理解

旋转关节机器人 四个参数:a,α,d,θ 四个参数实际上是两组,先有a,α,再有d,θ。 a是两个转轴之间的距离(Z轴),异面直线公垂线的长度,也…

DH算法及源码解读

【主流的密钥交换方式】 敏感数据信息安全传输需要对敏感信息加密,加密的密钥涉及到传输两端的密钥协商和交换,目前主要两种密钥交换的机制有: 1. 基于非对称密钥的实现:请求方用接收方的公钥加密自己的密钥,接收方用…

DH 加密算法的使用

DH 算法的介绍 上面介绍的 DES,3DES,AES 算法都是对称密码算法,所谓对称,在上面也解释了,就是加密和解密的过程中使用相同的密钥 。而现在将要介绍的是 DH 算法,属于非对称密码算法,根据对称密码的概念,很…

非对称加密 DH算法

DH算法简介 迪菲-赫尔曼密钥交换(Diffie–Hellman key exchange,缩写为D-H) 是一种安全协议。 它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。 这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。 迪…

DH算法 | Diffie-Hellman 密钥交换

概述: DH 算法又称“Diffie–Hellman 算法”,像往常的算法名字一样,这是用俩个数学牛人的名字来命名的算法,实现安全的密钥交换,通讯双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。 优点&am…

DH算法原理

DH算法原理 DH 是 Diffie-Hellman的首字母缩写,是Whitefield与Martin Hellman在1976年提出了一个的密钥交换协议。我个人倾向于称DH算法为 密钥协商协议而RSA算法是密钥交换算法。 本篇分为几个部分,第一个部分介绍一下密钥交换的场景;第二部…

DH、DHE、ECDHE加密算法

DH算法 离散对数 DH 算法是非对称加密算法, 因此它可以用于密钥交换,该算法的核心数学思想是离散对数。 对数运算: i l o g a b i log_{a}b iloga​b 离散对数是在对数运算的基础上加了「模运算」,也就说取余数,…