深度学习中的表示学习_Representation Learning

article/2025/9/20 15:47:25

一、深度学习网络的表达方式汇总及模型分类方法

人的大脑会对眼睛捕捉到的外界事物进行逐级抽象,逐渐提取出抽象的语义信息,以便为人脑所理解。深度学习从这一科学发现得到启发,通过网络的权值来捕捉外界输入模式的特征,并且通过网络连接方式来组合这些特征从而提取出更加高层特征,采用这种方法逐级从大量的输入数据中学习到对于输入模式有效的特征表示,然后再把学习到的特征用于分类、回归和信息检索。深度学习能够提取输入数据的特征,降低输入数据的维数和复杂度,逼近复杂的函数。

    为了使得深度网络结构变得更加容易训练,并且强化深度网络的特征提取和函数逼近能力,需要对深度学习网络采用更高效的网络表达方式。网络的表达方式是指网络采用何种结构上的连接方式来抽象表达输入模式的内部结构,或表示输入样本之间的关系。深度学习网络的表达方式有局部表达、分布式表达和稀疏表达3种。深度网络的网络结构是指网络神经元之间连接关系的确定原理,分为区分型网络结构和生成型网络结构两类。

1、局部表达、分布式表达和稀疏表达

    局部表达是一种基于局部模板匹配的表达方式。先通过一个局部核函数对输入样本进行映射,然后再采用一个线性组合对局部核函数的输出进行组合,得到期望的输出。

    分布式表达和稀疏表达思想来源于人脑的视觉机理,人脑通过逐层抽象表示外界事物来最终感知事物,这种抽象表示往往是通过一系列分散的神经元来实现的,这些神经元之间相互依赖,各自分散;同时,这种抽象表示也是稀疏的,在特定的时刻,只有1-4%神经元同时处于激活状态。分布式表达是分散的,能更有效地提取输入数据的特征,减少了对于样本的需求量;此外,分布式表达通过逐层降低输入模式的维度,解决高维输入模式引起的维度灾难问题。

    稀疏表达约束深度网络大部分神经元节点处于抑制状态,即输出值为0;只有少数神经元处于活跃状态,输出值非0。稀疏表示的目的就是希望通过少量的神经元来辨识出输入模式内部的驱动要素,在提取出驱动要素的过程中降低网络的计算复杂度。

2、判别模型与生成模型

    模型参数训练有两种方法,即判别方法和生成方法,参数训练后产生的模型分别称为判别模型和生成模型。在进行模型参数训练时给定一组输入X=(x1,x2,….xn),对应也会在模型的输出端得到一组输出Y=(y1,y2,....yn)。在已知输出Y的情况下,一定存在一组最优的输入X*使得条件概率P(X|Y)的值达到最大。由贝叶斯公式和全概率公式可得:

其中,P(Y|X)称为先验概率,P(X|Y)成为后验概率。生成方法是先对先验概率P(Y|X)建模,然后再求最优的输入参数。当输出Y已知时,P(Y) = 1,即X* = argmax P(Y|X),因此生成模型认为模型的输出Y可以看作是由输入X生成的。判别方法则是直接对后验概率P(X|Y)进行建模,在给定输出Y的状态下寻找最优的输入X*,因此判别模型认为模型的输入X是由模型的输出Y决定的。

    根据采用参数训练方法不同,深度网络分为生成型深度网络和判别型深度网络两类。深度学习常用模型有堆叠自动编码器、卷积网络和深度信念网络。其中,堆叠自动编码器和卷积网络属于生成型深度网络;深度信念网络属于判别型深度网络。此外,还有一些混合网络,如卷积网络和自动编码器组成卷积自动编码器,限制玻尔兹曼机和卷积网络组成卷积深度信念网络。深度学习应用最为广泛的有卷积网络、深度信念网络和堆叠自动编码器三种网络,这三种网络有各自的网络结构。

3、参考文献

[1]   孙志军, 薛雷, 许阳明, 王正. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8):2806-2810.

[2]   刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1942.

[3]   T. N. Sainath,B. Kingsbury, A. R. Mohamed. Learning filter banks within a deep neural network framework[C]. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Olomouc, 2013.

[4] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks[J]. Science, 2006:504–507.

[5]  Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient_based Learning Applied to Document Rerognition[J]. PROC. OF THE IEEE, 1998:1-46.

 

二、深度学习中的表示学习_Representation Learning

 在前面指出了深度学习中常用的三种表示数据的方式,即局部表达、稀疏表达和分布式表达。深度学习强大建模和知识抽取的能力,主要原因之一是它对观测样本X采用了有效的表达方式。

 数据的表达方式为什么如此重要?

    有效的表达方式可以简化我们处理问题的难度。比如,在NLP领域中,采用word2vec把词语表示成向量(vector)形式,要比采用one-hot形式表示词语具有很多优势:

    1、可以基于vector直接计算词与词之间的相似程度,one-hot表达形式不可以;

    2、word2vec表示的向量可以描述词与词之间的依赖关系,one-hot表达形式也不可以;

     3、vector不存在one-hot中的高纬问题,计算效率更高。

表示(表达)学习(Representation Learning)是什么?为什么表示的概念有助于深度学习框架的设计?

    表示学习,又称学习表示。在深度学习领域内,表示是指通过模型的参数,采用何种形式、何种方式来表示模型的输入观测样本X。表示学习指学习对观测样本X有效的表示。

表示学习有很多种形式,比如CNN参数的有监督训练是一种有监督的表示学习形式,对自动编码器和限制玻尔兹曼机参数的无监督预训练是一种无监督的表示学习形式,对DBN参数-先进性无监督预训练,再进行有监督fine-tuning-是一种半监督的共享表示学习形式。

表示学习中最关键的问题是:如何评价一个表示比另一个表示更好?

    表示的选择通常通常取决于随后的学习任务,即一个好的表示应该使随后的任务的学习变得更容易。以基于CNN的图像分类任务为例。模型可以分为基于CNN的特征抽取和基于softmax回归的线性分类两个部分。通过模型参数有监督的训练,通过CNN,从线性不可分的图片里抽取出线性可分表示(特征),softmax线性分类器可以基于抽取的线性可分的表示进行分类。

表示学习中最有趣的一种形式是涉及多个任务的共享表示学习。为什么?

    以无监督和有监督结合的共享表示学习为例。在深度学习任务中,我们通常有大量的无标签的训练样本和少量的有标签的训练样本。只在有限的有标签的训练样本上学习,会导致模型存在严重过拟合问题。共享表示具体来说,可以从大量无标签的观测样本中通过无监督的方法,学习出很好的表示,然后基于这些表示,采用少量有标签的观测样本来得到好的模型参数,缓解监督学习中的过拟合问题。

    共享表示学习涉及多个任务,多个任务之间共享一定相同的因素,比如相同的分布(distribution)、观测样本X来自相同的领域(domain)等。共享表示学习有多种表示形式。假设共享表示学习中采用训练样本A进行无监督学习,训练样本B进行有监督学习。样本A和样本B可能来自相同的领域,也可能来自不同的领域;可能任务服从相同的分布,也可能服从不同的分布。

    共享表示学习相关的机器学习技术有很多:迁移学习(Transfer Lear)、多任务学习(Multitask Learning)、领域适应性(Domain Adaptation)(One Shot Learning、Zero Shot learning)等。深度学习技术具有很强的特征抽取、知识表达的能力,是共享表示学习的利器,它可以有效抽取多个人任务之间共享的因素、知识或特征。因此,现在出现了很多将深度学习技术用于迁移学习、多任务学习技术中的研究。

 


http://chatgpt.dhexx.cn/article/EUCetoOb.shtml

相关文章

基于GNN的图表示学习及其应用

文章内容概述 本文内容分两部分,第一部分为基于 GNN 的图表示学习,共包含两节,第1节主要从三种建模方法上对图表示学习进行对比阐述;第2节分别从两类无监督学习目标——重构损失与对比损失,对基于 GNN 的无监督表示学习…

知识表示学习(KG Embedding)—— TransX系列

文章目录 前言TransETransHTransRTransD总结参考资料 前言 知识表示学习是针对于知识图谱三元组所做的word embedding,平常所做的都是基于完整的文本表述比如一句话去产生word2vec这种副产物,但是KG中的embedding是更为直接的构建实体与关系之间的语义联…

网络表示学习总结

我的GitHub博客:咖啡成瘾患者 网络的邻接矩阵表示网络的分布式表示网络表示学习的经典工作 DeepwalkLINEnode2vec 网络表示学习的相关论文 最近看了paperweekly的两次关于网络表示学习的直播,涂存超博士与杨成博士讲解了网络表示学习的相关知识。本文将网…

Deep Multimodal Representation Learning(深度多模态表示学习)

多模态表示学习旨在缩小不同模态之间的异质性差距,在利用普遍存在的多模态数据中发挥着不可或缺的作用。基于深度学习的多模态表示学习由于具有强大的多层次抽象表示能力,近年来引起了人们的广泛关注。 多模态融合的核心问题是异质性间隙,而为…

干货!Labeling Trick: 一个图神经网络多节点表示学习理论

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! GNN 旨在学习单节点表示。当我们想要学习一个涉及多个节点的节点集表示(如链路表示)时,以往工作中的一个常见做法是将 GNN 学习到的多个单节点表示直接聚合成节点集的联合表示…

知识图谱表示学习

知识图谱是一种精细化的异构网络, 所以对其节点与边的表示学习也是一个热门的问题. 这里的学习依旧是得到它们的低维稠密向量. 这样做的好处: 降低知识图谱的高维性和异构性;增强知识图谱应用的灵活性;减轻特征工程的工作量;减少由于引入知识…

深度聚类:将深度表示学习和聚类联合优化

参考文献: 简介 经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。结合深度学习优势的一种直接方法是首先学习深度表示,然后再…

什么是表示学习(representation learning)表征学习 表达学习

机器学习算法的成功与否不仅仅取决于算法本身,也取决于数据的表示。数据的不同表示可能会导致有效信息的隐藏或是曝露,这也决定了算法是不是能直截了当地解决问题。表征学习的目的是对复杂的原始数据化繁为简,把原始数据的无效信息剔除&#…

知识表示学习模型

最近清华的THUNLP整理了Pre-trained Languge Model (PLM)相关的工作:PLMpapers,非常全面,想要了解最新NLP发展的同学不要错过。本来这篇是打算写一写Knowledge Graph BERT系列工作的,但是最近有在做知识图谱的一些东西所以就先整…

网络表示学习(network represention learning)

https://www.toutiao.com/a6679280803920216589/ 2019-04-13 15:40:48 1.传统:基于图的表示(又称为基于符号的表示) 如左图G (V,E),用不同的符号命名不同的节点,用二维数组&#x…

图表示学习

文章目录 1.导言1.1 为什么要研究图(graph)1.2 针对图结构的机器学习任务1.3 特征表示的难点1.4 特征表示的解决思路1.5 线性化思路1.6 图神经网络1.7 讨论:何谓Embedding1.8 总结 2.图结构表示学习2.1 deepwalk(深度游走算法)2.2 node2vec 3…

表示学习(特征学习)

文章目录 表示学习特征工程与表示学习深度学习的表示学习注:深度学习不等于多层神经网络什么时候用「手工提取」什么时候用「表示学习」? 关于特征表示学习的算法 参考资料 表示学习 表示学习的基本思路,是找到对于原始数据更好的表达&#…

表示学习与深度学习

1、表示学习 首先给出表示学习的定义: 为了提高机器学习系统的准确率,我们就需要将输入信息转换为有效的特征,或者更一般性称为表示(Representation)。如果有一种算法可以自动地学习出有效的特征,并提高最…

表示学习(Representation Learning)

一、前言 2013年,Bengio等人发表了关于表示学习的综述。最近拜读了一下,要读懂这篇论文还有很多文献需要阅读。组会上正好报了这篇,所以在此做一个总结。 鉴于大家都想要我的汇报PPT,那我就分享给大家,希望能对大家有所…

使用 Altium Designer 绘制PCB完整设计流程记录(2021.05.04更新)

前言 做了大半年的毕业设计,陆陆续续也是画了几个板子,有些东西感觉要趁现在记录下来,方便以后某天还想再画板子时查看。 修改日志 时间修改内容2021.05.04初稿完成 文章目录 前言修改日志一、关于AD版本二、原理图库和封装库三、绘制原理…

PCB设计流程步骤中的注意事项

PCB中文名称为印制电路板,又称印刷线路板,几乎所有电子设备中都会应用到PCB。这种由贵金属制成的绿色电路板连接了设备的所有电气组件,并使其能够正常运行。PCB原理图是一个计划,是一个蓝图。它说明的并不是组件将专门放置在何处&…

使用Cadence绘制PCB流程(个人小结)

之前使用过cadence画过几块板子,一直没有做过整理。每次画图遇到问题时,都查阅操作方法。现在整理一下cadence使用经历,将遇到问题写出来,避免重复犯错。 注:写该篇文章时,感谢于争博士的教学视频和《Cade…

AD原理图 PCB设计步骤

版权声明:本文为CSDN博主「唐传林」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/Tang_Chuanlin/article/details/79803575 本文总结一下AD画PCB的步骤,…

AD中画PCB详细流程

1.新建工程 先在电脑新建一个文件夹作为工程总文件夹,里面再新建三个子文件夹分别为BOM(Bill Of Materials)(物料清单)、PCB、SCH(Schematic)(原理图)如下图1.1.1 (注意:记住该路径,该工程所有…

干货|PCB电路板的组成、设计、工艺、流程及元器摆放和布线原则

大家对PCB电路板电路这个词很熟,有的了解PCB电路板的组成,有的了解PCB电路板的设计步骤,有的了解PCB电路板的制作工艺......但是对整个PCB电路板的组成、设计、工艺、流程及元器件摆放和布线原则,及后期的注意事项没有一个综合的了…