Java HashMap底层实现

article/2025/9/22 0:37:56

HashMap 是 Java 使用频率最高的用于映射(键值对)处理的数据类型。JDK1.8 对 HashMap 底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。在JDK1.8以前HashMap是由数组+链表的数据结构组成的。

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系如下图所示:

下面针对各个实现类的特点做一些说明:

(1) HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

(2) Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4) TreeMap:TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。


 存储结构

从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。

(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node[JDK1.8]是何物。

static class Node<K,V> implements Map.Entry<K,V> {final int hash;    //用来定位数组索引位置final K key;V value;Node<K,V> next;   //链表的下一个nodeNode(int hash, K key, V value, Node<K,V> next) { ... }public final K getKey(){ ... }public final V getValue() { ... }public final String toString() { ... }public final int hashCode() { ... }public final V setValue(V newValue) { ... }public final boolean equals(Object o) { ... }
}

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。

(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:

    map.put("名字","小铭");

系统将调用"美团"这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下

     int threshold;             // 所能容纳的key-value对极限 final float loadFactor;    // 负载因子int modCount;  int size;

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor = 16*0.75 = 12。也就是说初始化时数组长度为1在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化

 在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考http://blog.csdn.net/liuqiyao_01/article/details/14475159,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。 


功能

HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。

. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7int h;// h = key.hashCode() 为第一步 取hashCode值// h ^ (h >>> 16)  为第二步 高位参与运算return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

下面举例说明下,n为table的长度

  • 分析HashMap的put方法 

小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

(5) 还没升级JDK1.8的,现在开始升级吧。HashMap的性能提升仅仅是JDK1.8的冰山一角。

 


http://chatgpt.dhexx.cn/article/CP0uqkta.shtml

相关文章

java----hashmap底层原理

概述 在Java集合中&#xff0c;Map是一种特殊的集合&#xff0c;原因在于这种集合容器并不是保存单个元素&#xff0c;而是保存一个一个的Key-Vaue键值对.HashMap是基于哈希表的Map接口的实现,在项目开发中使用广泛,下面就对HashMap的源码进行解析. Hashmap的特点 1.HashMap…

HashMap底层数据结构详解

一、HashMap底层数据结构 JDK1.7及之前&#xff1a;数组链表JDK1.8&#xff1a;数组链表红黑树 关于HashMap基本的大家都知道&#xff0c;但是为什么数组的长度必须是2的指数次幂&#xff0c;为什么HashMap的加载因子要设置为0.75&#xff0c;为什么链表长度大于等于8时转成了…

复习一波HashMap底层实现原理解析

HashMap是JAVA中最常见的集合类框架&#xff0c;也是java语言中非常典型的数据结构&#xff0c;同时也是我们需要掌握的数据结构&#xff0c;更重要的也是面试题必问之一。 我们常见的有集合数据有三种结构&#xff1a;1、数组结构 2、链表结构 3、哈希表结构 下面我们来看看各…

HashMap的底层实现

1. HashMap概述&#xff1a; HashMap是基于哈希表的Map接口的非同步实现&#xff08;Hashtable跟HashMap很像&#xff0c;唯一的区别是Hashtalbe中的方法是线程安全的&#xff0c;也就是同步的&#xff09;。此实现提供所有可选的映射操作&#xff0c;并允许使用null值和null键…

HashMap底层特性全解析

文章目录 一、前言二、HashMap2.1 HashMap数据结构2.2 HashMap线程不安全2.3 哈希冲突 三、JDK1.7中HashMap的实现3.1 基本元素Entry3.2 插入逻辑3.2.1 插入逻辑3.2.2 新建节点添加到链表 3.3 数组扩容逻辑3.4 null处理3.5 辨析扩容、树化和哈希冲突 四、JDK1.8中HashMap的实现…

HashMap底层

1、HashMap底层数据结构 JDK1.7的底层是 数组链表&#xff1b; JDK1.8之后 数组 链表 红黑树&#xff1b; 数组特点&#xff1a;具有随机访问的特点&#xff0c;能达到O(1)的时间复杂度&#xff0c;数组查询快&#xff0c;增删比较麻烦&#xff1b; 链表特点&#xff1a;…

HashMap底层实现和原理(源码解析)

Note&#xff1a;文章的内容基于JDK1.7进行分析&#xff0c;1.8做的改动文章末尾进行讲解。 大家可以看一下:https://www.imooc.com/article/267756 一、先来熟悉一下我们常用的HashMap 1、概述 HashMap基于Map接口实现&#xff0c;元素以键值对的方式存储&#xff0c;并且…

HashMap 底层原理

前言 HashMap 源码和底层原理在现在面试中是必问的。因此&#xff0c;我们非常有必要搞清楚它的底层实现和思想&#xff0c;才能在面试中对答如流&#xff0c;跟面试官大战三百回合。文章较长&#xff0c;介绍了很多原理性的问题&#xff0c;希望对你有所帮助~ 正文 **说明&a…

HashMap底层原理剖析(面试收藏!!!)

HashMap HashMap底层原理剖析(超详细&#xff01;&#xff01;&#xff01;)一、散列表结构二、什么是哈希&#xff1f;三、HashMap原理讲解3.1继承体系图3.2Node数据结构分析3.3底层存储结构3.4put数据原理分析3.5什么是哈希碰撞&#xff1f;3.6JDK8为什么引入红黑树&#xff…

HashMap底层原理

文章目录 1.HashMap的概念2.底层数据结构2.JDK1.8之前存在的问题&#xff1f;3.问题&#xff1a;加载因子为什么默认值为0.75f &#xff1f;4.问题&#xff1a;如果得到key的hash值&#xff08;哈希码&#xff09;5.问题&#xff1a;如何得到插入元素在数组中的下标6.问题&…

HashMap 的底层结构和原理

1. 讲讲 HashMap 的底层结构和原理 HashMap 就是以 Key-Value 的方式进行数据存储的一种数据结构嘛&#xff0c;在我们平常开发中非常常用&#xff0c;它在 JDK 1.7 和 JDK 1.8 中底层数据结构是有些不一样的。总体来说&#xff0c;JDK 1.7 中 HashMap 的底层数据结构是数组 …

HashMap底层原理(详细介绍)

数组&#xff1a;其实所谓的数组指的就是一组相关类型的变量集合&#xff0c;并且这些变量彼此之间没有任何的关联。存储区间连续&#xff0c;占用内存严重&#xff0c;数组有下标&#xff0c;查询数据快&#xff0c;但是增删比较慢&#xff1b; 链表&#xff1a;一种常见的基…

HashMap底层详解

1、HashMap底层存储原理详解 HashMap存储原理 ☆获取到传过来的key&#xff0c;调用hash算法获取到hash值 ☆获取到hash值之后调用indexFor方法&#xff0c;通过获取到的hash值以及数组的长度算出数组的下标 (把哈希值和数组容量转换为二进&#xff0c;再在数组容量范围内与哈…

Java基础——工厂模式、单例模式、懒汉模式、饿汉模式

案例&#xff1a; 这里有Factory类、Goods接口、Foods类、Drink类以及Others类。其中&#xff0c;Foods类、Drink类和Others类继承Goods接口&#xff0c;实现各自对应的方法。然后&#xff0c;在测试类中&#xff0c;创建Goods接口指向三个子类中的某一个&#xff0c;通过Facto…

单例模式——饿汉模式和懒汉模式

目录 &#x1f95d;线程安全的单例模式&#x1f95d;饿汉模式&#x1f95d;懒汉模式&#x1f95d; 懒汉模式总结 &#x1f95d;线程安全的单例模式 线程安全的单例模式是面试中常见的问题,所以熟练掌握这种单例模式尤为重要 什么叫单例模式? 单例模式就是一种设计模式,写代码时…

C# 设计模式之单例模式(懒汉模式、饿汉模式、静态内部类模式)

C# 设计模式之单例模式&#xff08;懒汉模式、饿汉模式、静态内部类模式&#xff09; 应用场景&#xff1a;在整个软件运行生命周期内&#xff0c;一个类只允许一次实例化&#xff0c;例如数据库连接池的连接对象创建&#xff1b;通过使用单例模式来避免反复创建连接对象&#…

muduo源码剖析——Singleton单例模式之懒汉模式与DCL双重检查

0 懒汉与饿汉 对于Singleton单例模式我们并不陌生&#xff0c;但我们常用的多是饿汉模式&#xff1a; Singleton实例的声明和实例化在instance()函数中同时完成。而懒汉模式要求&#xff0c;Singleton实例的声明和实例化分开&#xff1a; 先声明Singleton实例对象&#xff0…

C++单例模式 : 懒汉模式 与 饿汉模式

单例模式&#xff1a; 只能有一个实例&#xff0c;有懒汉和饿汉区分&#xff0c;实现核心思想&#xff1a; 1.构造函数私有化 2.使用静态函数作为接口来获取类对象 1、懒汉模式&#xff1a; 由调用者实例&#xff0c;多线程情况下会存在线程安全问题&#xff0c;需要加互斥锁进…

单例模式的创建(饿汉模式懒汉模式)

&#x1f388;专栏链接:多线程相关知识详解 目录 一.什么是单例模式 二.用static来创建单例模式 三.饿汉模式与懒汉模式 四.饿汉模式与懒汉模式的线程安全问题 五.New引发的指令重排序问题 六.小结 一.什么是单例模式 单例模式就是指某个类有且只有一个实例(instance…

单例模式:懒汉模式

所谓“懒汉式”与“饿汉式”的区别&#xff0c;是在与建立单例对象的时间的不同。 “懒汉式”是在你真正用到的时候才去建这个单例对象“饿汉式是在类创建的同时就已经创建好一个静态的对象&#xff0c;不管你用的用不上&#xff0c;一开始就建立这个单例对象 代码实现&#x…